CLINICAL STUDIES

Identification of the Domestic Mite Fauna of Puerto Rico.

F. MONTEALEGRE, PhD*; A. SEPULVEDA, BS*; M. BAYONA, PhD†; C. QUIÑONES MT*; E. FERNANDEZ-CALDAS, PhD†

ABSTRACT. This study was conducted to identify the domestic mite fauna of Puerto Rico. A total of 57 dust samples were collected from mattresses in homes of 11 cities on the Island. The analysis of the samples revealed that 73.70% of the mattress samples had at least one mite species. The identified species include: *Dermatophagoides pteronyssinus* (45.6%), *Blomia tropicalis* (31.6%), *Cheyletus* sp. (19.3%), *Dermatophagoides farinae* (17.5%), *Euroglyphus maynei* (5.3%), *Dermatophagoides siboney* (1.8%), *Dermatophagoides sp.* (1.8%), *Suidasia melanensis* (1.8%) and mite species that were not identified (5.3%). Differences in the geographical distribution of mites showed that only *Blomia tropicalis* is more frequently in the northern (43%) than in the southern region (19%) of Puerto Rico (OR 3.36, p<0.046). This finding can be explained by the fact that in the northern region the relative humidity is significantly higher than in the southern region (p<0.001). No significant differences were observed for other species or in the total mite counts between the northern and southern regions. The small sample size of this study may explain the lack of significance for some of the differences found. Nevertheless, our results indicate that the domestic mite fauna is composed of several clinically important species, their numbers are high enough to be considered in the sensitizing levels, and the diversity of these species is comparable to other observations in the Caribbean areas, and in the southern states in the continental US. Based upon our results, we recommend that when performing the skin test in Puerto Rico, extracts from the identified local domestic mite species be included in the allergen panel. This may prove useful in the aid for the diagnosis and management of atopic conditions. Keywords Domestic mites, *Blomia tropicalis*, *Euroglyphus maynei*, *Dermatophagoides siboney*, Puerto Rico.

Domestic mites are one of the most important sources of indoor allergens and their role as a risk factor in atopic diseases has been well established. (1,2,3) The earliest suggestion of the domestic mite as a possible source of allergens was made by Dekker in 1928 who recorded large numbers of unidentified mites in house dust, mainly collected from mattresses. (4) Forty years later Voorhorst *et al* established the major role played in house dust allergy by the domestic mite *Dermatophagoides pteronyssinus*. (5) These researchers discovered that in Europe this mite was present in large numbers in the majority of the houses examined and, since extracts of this mite produced similar skin test reactions in atopic patients as does the house mite, they concluded that *D. pteronyssinus* was associated with their reactions. These findings were later confirmed in the United States by Bullock *et al* (6) and Kawai *et al*, (7) and in Japan by Miyamoto *et al*. (8)

During the last two decades numerous and important findings in the study of the domestic mites have been published. For example, it has been demonstrated that the indoor humidity level, which is dependent upon the geographical region and the altitude, determines the distribution of domestic mites; the highest number of mites is found in the more humid areas. (9,10) Another relevant observation related to domestic mites is the levels of domestic mite infestation in mattresses which are associated with allergen sensibilization and triggering of clinical symptoms. (11) These authors demonstrated that 100 or more mites per gram of dust is a risk factor for sensitization in susceptible individuals. Clearly, the geographical distribution of the domestic mite fauna and

*Laboratory of Immunohemistry, Ponce School of Medicine, Ponce, Puerto Rico.
Public Health Program, College of Allied Health Sciences, Nova-Southeastern University, Davie, FL.
University of South Florida, Tampa, FL.
Address correspondence to: Dr. F. Montalegre, PhD, Department of Microbiology, Ponce School of Medicine, PO Box 7004, Ponce, Puerto Rico 00732-7004.
This research project was financed in its entirety by a Grant in AIDS from the National Institutes of Health, RCMI-RR015050.
A preliminary account of these results were presented at the meeting of the European Academy of Allergy and Immunology, Madrid, Spain, 1995.
its degree of diversity as well as the infestation levels on
a particular geographic area is determined by its
temperature and humidity. To this effect, species of the
Pyroglyphidae, Acaridae and Glycyphagidae are
considered to have cosmopolitan distribution. (12)
However, certain species may predominate in different
countries and it is possible that species variation can be
found within countries. For example, the Pyroglyphid
mites such as D. pteronyssinus, predominates over the
other species in most countries where it has been
described, specially in the coastal areas. Similarly, E.
maynei has preference for the coastal areas of Europe and
in the tropical areas of the world this mite is rare. In the
case of D. farinae it predominates in areas which are far
from the coast. In the tropical areas of the Caribbean
islands, the mite fauna mainly consists of
Dermatophagoides farinae and D. pteronyssinus.
(13,14,15,16) Although certain species are abundant in
some locations, they are completely absent in other areas
with similar climate. This is the case of the
Dermatophagoides siboney which has been reported only
in Cuba. (17) In the Glycyphagidae species such as L.
destructor, Aleuroglyphus ovatus, Chortoglyphus
arcuatus, Glycyphagus spp., Suidasia spp. and Blomia
spp., they have been reported in numerous house dust
surveys. (18,19,20)

In view of the importance of the domestic mites as a
risk factor for atopic conditions, the objective of this study
was to define their occurrence, distribution, and relative
abundance in Puerto Rico.

Materials and Methods.

Dust sampling. Dust samples collected from 57
mattresses using a modified hand-held vacuum cleaner at
a rate of 2 min/m², covering the entire surface of the
mattress. The dust was stored at 4°C in sealed plastic bags
until analyzed as previously described. (21) Mite
identification was conducted under the light microscope.
Homes were selected on the basis of availability and were
visited only once. Humidity and temperature readings
were obtained by using a battery operated digital
hygrometer thermometer (Dew Point, Fisher Scientific,
Pittsburgh, PA) in each sample site. The instrument was
allowed to equilibrate according to the vendor's
instructions and the temperature and relative humidity
were recorded in each residence. In addition, at each
home a small questionnaire was applied to obtain basic
epidemiological data such as the presence of carpets in
the bedroom and living rooms, age of the mattress from
which the sample was taken, use of mattress encasings
and knowledge about domestic mites. Collection of dust
was conducted in August, 1994.

Data analysis. Data entry and analysis was carried out
by using an electronic spreadsheet as a main platform.
Statistical analysis were conducted using EPINFO 6.0
(Pan American Health Organization). Frequency
distributions were carried out for all variables. Arithmetic
means were calculated for the temperature, humidity, age of
the mattress, age of the house and persons living in the
household. Student t test was used to assess the significance
of the difference of means between total mite counts and
regions of Puerto Rico, between temperature and humidity
of the regions of Puerto Rico, Pearson's correlation
coefficients, and their 95 percent confidence limits were
used to assess the relationship between age of the mattress
and total mite counts. Assessment of association between
domestic mite species and geographical was carried out
by using 2x2 tables, the odds ratio (OR) were used as a
measure of association, Cornfield's 95 percent confidence
intervals for the odds ratio and the Woolf test were used
(22,23).

Results

Climatological data. Dust from 57 mattresses was
collected in 11 cities of Puerto Rico. Table 1 lists the cities
from which dust was collected, region in which it was
categorized, and number of samples per site. Table 2
summarizes the number of samples collected and
temperature and humidity conditions at the time of
collection between the northern and southern regions of
Puerto Rico. Significant differences in the relative humidity
were observed between the northern and southern regions
of Puerto Rico.

Table 1. Cities of Puerto Rico from with dust samples
from mattresses were obtained

<table>
<thead>
<tr>
<th>City</th>
<th>Region</th>
<th># Samples</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arecibo</td>
<td>North</td>
<td>8</td>
<td>14.0</td>
</tr>
<tr>
<td>Canovanas</td>
<td>North</td>
<td>6</td>
<td>10.5</td>
</tr>
<tr>
<td>Guanica</td>
<td>South</td>
<td>4</td>
<td>7.0</td>
</tr>
<tr>
<td>Guayama</td>
<td>South</td>
<td>7</td>
<td>12.3</td>
</tr>
<tr>
<td>Hormigueros</td>
<td>South</td>
<td>5</td>
<td>8.8</td>
</tr>
<tr>
<td>Lajas</td>
<td>South</td>
<td>4</td>
<td>7.0</td>
</tr>
<tr>
<td>Lares</td>
<td>North</td>
<td>7</td>
<td>12.3</td>
</tr>
<tr>
<td>Loiza</td>
<td>North</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td>Mayaguez</td>
<td>South</td>
<td>3</td>
<td>5.3</td>
</tr>
<tr>
<td>Ponce</td>
<td>South</td>
<td>4</td>
<td>7.0</td>
</tr>
<tr>
<td>San Juan</td>
<td>North</td>
<td>7</td>
<td>12.3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>57</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 2. Summary of number of samples obtained and climatological data in the Northern and Southern regions of Puerto Rico at collection sites

<table>
<thead>
<tr>
<th>Regions</th>
<th>Samples</th>
<th>%</th>
<th>Mean temperature (°C)</th>
<th>Mean relative humidity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>30</td>
<td>52.6</td>
<td>84.6±6.9f</td>
<td>63.7±6.5</td>
</tr>
<tr>
<td>South</td>
<td>27</td>
<td>27.4</td>
<td>88.2±2.5</td>
<td>54.6±6.8</td>
</tr>
<tr>
<td>Totals</td>
<td>57</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significant at p<0.001

Identification and quantitation of mite species. Seven different species of domestic mites and one predator species were identified under the light microscopy (Table 3). The most abundant species found was Dermatophagoides pteronyssinus followed by Blomia tropicalis, D. farinae and Euroglyphus maynei. Also it was observed that one or more species were found in 64.9% of the homes sampled (Table 4). The most frequent combination of mite species found in the dust samples analyzed was D. pteronyssinus and B. tropicalis followed by D. pteronyssinus and D. farinae.

Mite counts. Twenty six percent of the homes sampled had total mite counts less than 100 mites per gram of dust. This count included mites of clinical importance as well as predator and unidentified species. It was observed that total mite counts greater than 100 mites/gram of dust were detected in 33.3% of the homes (Table 5). Total counts greater than 100 mites per gram of dust of the domestic mite D. pteronyssinus, B. tropicalis and D. farinae were found in 26.3%, 14.0% and 10.5% of the samples.

Geographical distribution. The geographical distribution of the clinically important mite species was found to be heterogeneous. Significant differences were observed in the mite distribution between the northern and southern regions of Puerto Rico. These differences were noticeable only for B. tropicalis and Cheyletus species. In the case of B. tropicalis, the northern region had 3.36 times more mites than the southern region (Table 6). No significant differences were obtained between the northern and southern regions in the mean mite counts (Table 7). However, when the distribution of the clinical important mite species was analyzed, we observed a wide variation among the 11 cities studied (Table 8). It was noticed that B. tropicalis was the dominant mite species in Arecibo. This city had also a high temperature with the highest relative humidity of the 11 cities sampled. In the case of D. pteronyssinus, it was found in higher frequency in samples collected in San Juan, Lajas, Luquillo and Loiza. In the latter, which showed the highest temperature with a relatively high humidity, D. pteronyssinus was found in 100% of the houses sampled.

Furthermore, the city of Loiza had the highest Pyroglyphidae count of all of the cities with a mean of 640 mites per gram of dust. In the case of the Glyphidae, Arecibo had the highest count with a mean of 200 mites per gram of dust. An even distribution of domestic mite species was observed in other cities Hormigueros, Guayama and Ponce. The altitude seemed not to affect the domestic mite geographical distribution (Table 9).

Household characteristics. Our data shows that 68.4% of the persons interviewed had a family member suffering from allergies, and that 43.9% had some knowledge about domestic mites and their biological importance (Table 10). However only 7% did use mattress or pillow encasings. The presence of household risk factors involved with the growth of domestic mites such as carpets in the living rooms and bedrooms were present in low frequencies. For the presence of carpets in the living rooms was 14.0%, and for carpets in the bedrooms was 15.8%.

Discussion

Our results show that the domestic mite fauna of Puerto Rico is diverse and several of the species found are important as sensitizing agents in susceptible patients. These include Dermatophagoides pteronyssinus, D. farinae, D. siboney, Euroglyphus maynei and Blomia tropicalis. The diversity and frequency of the mite fauna can be explained by the fact that Puerto Rico has a hot and humid climate which provides a perfect environment for the growth of a diverse domestic mite fauna. No particular influences by the altitude were observed in the distribution of mite species. The average total mite count of 189.9 mites per 100 mg of dust (1,628 mites per gram) found in our study appears to be on the mid ranges of the published ranges of 27 to 4,293 mites per gram of dust. (24) We observed that counts greater than 100 mites per gram of dust were found in 33.36% of the samples analyzed and at these levels, domestic mites are a risk factor for the appearance of symptoms in susceptible individuals. (1)

Members of the Pyroglyphidae (D. pteronyssinus, D. farinae, D. siboney and E. maynei) family are known to be important sources of sensitizing agents. (25) We have been able to demonstrate that the sensitization levels in Puerto Rican asthmatics and atop dermatitis patients to some of these mite species including D. pteronyssinus, D. farinae and E. maynei are relatively high. (26,27) Results obtained in the present survey correlate with these observations. The mite D. pteronyssinus was the most abundant species of this family was found in 45.6% of the homes sampled. This finding is in agreement with
previous surveys in the area which describe this mite as the most abundant in the Caribbean region. (28) Another member of the Pyroglyphidae family, D. farinae was found in 17.5% of the samples. An unexpected finding was the identification of Euroglyphus maynei in Puerto Rico, and in numbers sufficiently high to cause sensitization (mean 106.67 per 100 gms of dust) in susceptible patients. This is mainly because geographically, this species is common in coastal areas of Europe. (29,30,31) In the Americas, E. maynei has been described in south America and in few studies in the United States. (32,33,34) Although this observation report variability in its abundance, Arlian et al found E. maynei in higher numbers in homes in Texas. In our study 5.3% of the households had E. maynei (Table 3). The percent of homes with this species may seem, but E. maynei may play an important role in sensitizing susceptible individuals. (35) One of the most important tropicalis, and was the most abundant species found in the northern region of Puerto Rico, specially in the city of Arecibo. This domestic mite was identified in 31.6% of the samples analyzed (Table 3), and the mite counts had a range between 40 to 1200 mites per gram. The presence of B. tropicalis in dust from houses in tropical and subtropical regions of the world has been described since 1973. (39,40) Since then, this species has been increasingly identified in dust samples throughout the world. In the United States, B. tropicalis has been described in the south coastal regions of the United States, as a codominant species with D. pteronyssinus. (41,42) More recently, in a multicenter study, B. tropicalis has been described in Louisiana, Tennessee, Texas, Florida and California. (43) In Central and South America, B. tropicalis has been described in surveys conducted in Guatemala, (44) Costa Rica, (45) Colombia, (46)

Table 3. Taxa and number collected of domestic mites in 57 homes throughout Puerto Rico

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Mean (range) of mites per gram of dust</th>
<th>Frequency (a) of mite species found in dust</th>
<th>% Houses with mites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astigmata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyroglyphidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermatophagoides pteronyssinus</td>
<td>238.5 (440-1200)</td>
<td>26</td>
<td>45.6</td>
</tr>
<tr>
<td>D. farinae</td>
<td>252.0 (40-560)</td>
<td>10</td>
<td>17.5</td>
</tr>
<tr>
<td>D. siboney</td>
<td>200.0 (na)</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>Euroglyphus maynei</td>
<td>106.7 (40-160)</td>
<td>3</td>
<td>5.3</td>
</tr>
<tr>
<td>Dermatophagoides sp.</td>
<td>40 (na)</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>Glycyphagidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blomia tropicalis</td>
<td>157.8 (40-1200)</td>
<td>18</td>
<td>31.6</td>
</tr>
<tr>
<td>Acaridae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfacia sp.</td>
<td>40</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>Unidentified</td>
<td>40</td>
<td>3</td>
<td>5.3</td>
</tr>
<tr>
<td>Prostigmata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheyletidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheyletus meleagris</td>
<td>50.9 (40-120)</td>
<td>11</td>
<td>19.3</td>
</tr>
</tbody>
</table>

Findings in the present survey is that we confirm our previous report on the presence D. siboney, outside Cuba. (36) Not much is known about this species however, it may contribute to the total mite allergen counts since its clinical importance has been clearly demonstrated by Fernández et al. (37) Our data clearly demonstrates that the Pyroglyphid mites are dominant family in the mite fauna in Puerto Rico since they contributed to 72% of the total mite counts which is well the reported limits. (38)

The Glycyphagidae (B. tropicalis) species also had an important contribution to the total mite count in Puerto Rico. Analysis of the data showed that the second most abundant domestic mite species found in dust was B. tropicalis, and was the most abundant species found in the northern region of Puerto Rico, specially in the city of Arecibo. This domestic mite was identified in 31.6% of the samples analyzed (Table 3), and the mite counts had a range between 40 to 1200 mites per gram. The presence of B. tropicalis in dust from houses in tropical and subtropical regions of the world has been described since 1973. (39,40) Since then, this species has been increasingly identified in dust samples throughout the world. In the United States, B. tropicalis has been described in the south coastal regions of the United States, as a codominant species with D. pteronyssinus. (41,42) More recently, in a multicenter study, B. tropicalis has been described in Louisiana, Tennessee, Texas, Florida and California. (43) In Central and South America, B. tropicalis has been described in surveys conducted in Guatemala, (44) Costa Rica, (45) Colombia, (46)

Venezuela, (47) and Brasil. (48) In the Caribbean, B. tropicalis has been reported only in Barbados and Cuba. (49,50) In addition, this mite has been identified also Taiwan and Hong Kong. (51,20). Evidence supporting the clinical importance of B. tropicalis in allergic disease has been provided by several authors. For example, Arruda et al demonstrated the presence of B. tropicalis specific IgE antibodies in asthmatic children and the RAST activity in this population was moderate to high indicating sensitization to this mite. (52) In other studies similar results have been presented by Fernández-Caldas et al, (1988, 1990) and Gabriel et al (1982). (53) Of the species identified B. tropicalis showed a
Table 4. Frequency of number of mite species found in mattresses throughout Puerto Rico

<table>
<thead>
<tr>
<th>Number of mite species</th>
<th>Frequency (n)</th>
<th>Percent</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>26.3</td>
<td>26.3</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>38.6</td>
<td>64.9</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>21.1</td>
<td>86.0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>8.8</td>
<td>94.7</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3.5</td>
<td>98.2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1.8</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>57</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Quantification of household total mite count and mite species

<table>
<thead>
<tr>
<th>Mites per gram of dust</th>
<th>D. pteronyssinus</th>
<th>D. farinae</th>
<th>B. tropicalis</th>
<th>E. maynei</th>
<th>TOTAL mite count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19.3†</td>
<td>82.5</td>
<td>68.4</td>
<td>94.7</td>
<td>40.4</td>
</tr>
<tr>
<td>1-100</td>
<td>19.3</td>
<td>7.0</td>
<td>17.5</td>
<td>1.8</td>
<td>26.3</td>
</tr>
<tr>
<td>>100</td>
<td>26.3</td>
<td>10.5</td>
<td>14.0</td>
<td>3.5</td>
<td>33.3</td>
</tr>
</tbody>
</table>

†Represented in percent of homes

Table 6. Odds ratio for the presence of domestic mite each species for the Northern and Southern regions of Puerto Rico

<table>
<thead>
<tr>
<th>Mite species</th>
<th>Odds ratio</th>
<th>CI 95%</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. pteronyssinus</td>
<td>0.32</td>
<td>0.06-1.64</td>
<td>0.1</td>
</tr>
<tr>
<td>D. farinae</td>
<td>3.36</td>
<td>0.87-13.71</td>
<td>0.04†</td>
</tr>
<tr>
<td>B. tropicalis</td>
<td>5.36</td>
<td>0.90-41.19</td>
<td>0.030†</td>
</tr>
<tr>
<td>E. maynei</td>
<td>0.00-0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D. siboney</td>
<td>0.00-0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cheyletus sp.</td>
<td>0.00-0.00</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

†Significant at p<0.05%

Table 7. Comparison of the mean mite count between northern and southern regions of Puerto Rico

<table>
<thead>
<tr>
<th>Mite species</th>
<th>Mean ± mites gram/dust</th>
<th>North (n=30)</th>
<th>South (n=27)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. pteronyssinus</td>
<td>189.3±323.76</td>
<td>133.3±211.95</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>D. farinae</td>
<td>166.6±298.24</td>
<td>44.4±81.01</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>B. tropicalis</td>
<td>16.0±466.93</td>
<td>75.5±169.46</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>E. maynei</td>
<td>77.3±220.07</td>
<td>19.2±44.8</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Cheyletus sp.</td>
<td>16.0±28.95</td>
<td>80.0±10.67</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Suidasia sp.</td>
<td>40.0±7.30</td>
<td>0.0±1.82</td>
<td>0.34</td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Relative frequency of domestic mites in 11 cities of Puerto Rico

<table>
<thead>
<tr>
<th>City</th>
<th>D. pteronyssinus</th>
<th>D. farinae</th>
<th>E. maynei</th>
<th>D. siboney</th>
<th>B. tropicalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arecibo</td>
<td>37.0†</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>62.5</td>
</tr>
<tr>
<td>Canovanas</td>
<td>33.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33.3</td>
</tr>
<tr>
<td>Guanica</td>
<td>25.0</td>
<td>50.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Guayama</td>
<td>43.0</td>
<td>-</td>
<td>29.0</td>
<td>14.3</td>
<td>43.3</td>
</tr>
<tr>
<td>Hormigueros</td>
<td>40.0</td>
<td>-</td>
<td>20.0</td>
<td>-</td>
<td>20.0</td>
</tr>
<tr>
<td>Lajas</td>
<td>50.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lares</td>
<td>71.4</td>
<td>25.0</td>
<td>-</td>
<td>-</td>
<td>43.9</td>
</tr>
<tr>
<td>Loiza</td>
<td>100.0</td>
<td>50.0</td>
<td>-</td>
<td>-</td>
<td>50.0</td>
</tr>
<tr>
<td>Mayagüez</td>
<td>67.0</td>
<td>67.0</td>
<td>-</td>
<td>-</td>
<td>33.3</td>
</tr>
<tr>
<td>Ponce</td>
<td>36.8</td>
<td>50.0</td>
<td>5.2</td>
<td>2.1</td>
<td>26.3</td>
</tr>
<tr>
<td>San Juan</td>
<td>57.0</td>
<td>14.2</td>
<td>-</td>
<td>-</td>
<td>29.0</td>
</tr>
</tbody>
</table>

†Percent of homes.
since it is commonly reported in previous surveys by Yoshikawa (1979) and others. (54,55) Most homes (38.6%) were inhabited by a single mite species and few homes were co-inhabited by several species (data not shown). The most frequent combination of species found were *D. farinae* and *B. tropicalis*.

Although 43.9% of the persons interviewed indicated some knowledge on domestic mites, our data suggests that an active educational program should be aimed towards the use of mattress and pillow encasings to prevent sensitization and appearance of allergic symptoms in susceptible individuals. No correlations were observed between total mite counts and age of the mattresses, number of persons living in the household and age of the house.

This study had a small sample size, however the results strongly indicate that the domestic mite fauna of Puerto Rico is diverse and is similar to that previously described for the subtropical and tropical regions of the world including the southern coastal regions of the United States (Florida and Louisiana). Because of this mite species diversity and the total mite counts in the households are high enough to cause sensitization, susceptible allergic individuals may be at high risk for exacerbations of their conditions. Based on the characteristics of the domestic mite fauna in Puerto Rico, we suggest the inclusion of extracts from *Dermatophagoïdes pteronyssinus*, *D. farinae*, *Euroglyphus maynei* and *Blomia tropicalis*, in the allergen panel in the routine skin prick test for *Chortoglyphus arcuatus* may be found. In addition, studies analyzing the seasonal variation of the most important species of domestic mites should be conducted.

Resumen

Este estudio se realizó con el objetivo de identificar la fauna de ácaros domésticos en Puerto Rico. Un total de 57 muestras de polvo de colchón fueron tomadas en 11 ciudades de la Isla. El análisis de las muestras demuestran que el 73.70% de estas tenían por lo menos una especie de ácaros domésticos. Las especies identificadas incluyen: *Dermatophagoïdes pteronyssinus* (45.6%), *Blomia tropicalis* (31.6%), *Cheyletiella sp.* (19.3%), *Dermatophagoïdes farinae* (17.5%), *Euroglyphus maynei* (5.3%), *Dermatophagoïdes siboney* (1.8%), *Dermatophagoïdes sp.* (1.8%), *Suidasia melanensis* (1.8%) y otras no identificadas (5.3%). Se notó que en la distribución geográfica de las especies identificadas, solamente *Blomia tropicalis* fue el ácaro doméstico más frecuente en muestras de polvo de la región norte (43%) que de la región sur (19%) de Puerto Rico (OR 3.36, p<0.046). Esta observación se puede explicar por el hecho que en la región norte, la humedad relativa es más alta que en la región sur (p<0.001). Nuestros resultados indican que...
la fauna de ácaros domésticos de Puerto Rico está compuesta de varias especies las cuales son de importancia clínica y sus números son lo suficientemente altos para que se consideren como niveles sensibilizantes, y que la diversidad de especies es comparable a otras observaciones realizadas en el Caribe y en el sur de los Estados Unidos. En base a nuestros resultados, recomendamos que cuando se realicen las pruebas cutáneas para las alergias en Puerto Rico, extractos de las especies locales sean incluidas en el panel utilizado. Esto podrá ser útil para el diagnóstico y manejo de condiciones atópicas.

Acknowledgement

The authors wish to thank Dr. Arthur Hupka, Ph.D., Professor at the Department of Pharmacology and Toxicology of the Ponce School of Medicine for his suggestions in the preparation of this manuscript.

References

26. Montealegre F, Quitonnes C, Villas J, Sanchez E, and Bayona M. Domestic mites are the most important sensitizing agent in atopic dermatitis patients in southern Puerto Rico. XII Iberoamerican Dermatology Congress, San Juan, Puerto Rico, August 1995. (Abstract).

J Allergy Clin Immunol 1991;87:293.

