Magnetic Resonance Angiography of Giant Aneurysms: Pitfalls and Surgical Implications

ORLANDO DE JESUS MD; NATHAN RIFKINSON MD

Objective. Magnetic resonance angiography (MRA) can be used to identify cerebral aneurysms. In this report, techniques for the diagnosis of giant cerebral aneurysm using MRA are discussed. Pitfalls in the diagnosis are presented.

Background. Giant cerebral aneurysms, which can be partially or totally thrombosed, or may have slow flow, can be confusing and difficult to diagnose. Giant cerebral aneurysms with thrombus formation, produce an artifact in time-of-flight MRA in which the thrombus simulates flowing blood.

Method. Five consecutive patients with the suspected diagnosis of giant cerebral aneurysm by MRA were analyzed. Neuroradiological studies were reviewed.

Results. In 20% of the cases, the correct diagnosis was made using MRA; in 60% of the cases, a correct diagnosis was made, but the size or the presence of flow was not correctly identified; in 20% of the cases, the diagnosis was incorrect. Four patients with giant cerebral aneurysms who presented a diagnostic and a therapeutic challenge are discussed.

Conclusion. Unless MRA findings are combined with computed tomography scan and magnetic resonance imaging findings, the exact nature of the sac contents of giant cerebral aneurysms cannot be identified. Keywords: Artifact giant cerebral aneurysm Magnetic resonance angiography Thrombus.

Material and Methods

A review done at the University of Puerto Rico Medical Center over a 3-year period, between 1993 and 1995, identified ten patients with suspected diagnosis of a giant cerebral aneurysm at the initial diagnostic study. There were six females and four males. In five patients the diagnosis of giant cerebral aneurysm was confirmed by DSA without doing the MRA. In the remaining five patients, an MRA was done before the DSA. All MRA studies were initially analyzed by a neuroradiologist, the MRA findings were compared to the DSA findings, and
then correlated with the final pathology. These last five patients were used for our analysis and are discussed below.

Case 1. A 55 year-old male was transferred to our hospital with a rapid decrease in his level of consciousness. He entered another hospital due to a progressive, severe quadriplegia, respiratory dysfunction requiring a tracheotomy, and facial diplegia. Non-contrast head computed tomography (CT) scan showed a large round, calcified, midline posterior fossa lesion in the preptinone cistern, causing severe obstructive hydrocephalus (Fig. 1 upper left). He underwent a ventriculo-peritoneal shunt and gradually awakened and started to follow commands with eye-opening. He was scheduled for magnetic resonance imaging (MRI) and MRA. Due to his unstable blood pressure, only the MRA was performed, which revealed a large lesion related to the basilar artery trunk (Fig. 1 upper right). A DSA was done which did not show an aneurysmal sac or neck (Fig. 1 lower left), but an area of stasis of the dye along the posterior wall of the basilar artery in the venous phase (Fig. 1 lower right). We concluded that the lesion was an aneurysm that was completely thrombosed. Surgery was planned to decompress the brain stem. A left subtemporal prestigmoid (petrosal) approach was used (5). After opening the dura, the aneurysm was identified, and proximal and distal controls were obtained. A fine needle was introduced into the hard, non-collapsible aneurysm sac and no blood was obtained. At this time it was confirmed that aneurysm was completely thrombosed so it was decided to trap and decompress the aneurysm in view of the presence of a good collateral supply. A permanent clip was placed on the basilar artery distal to the origin of the anterior inferior cerebellar arteries and another clip was placed proximal to the origin of the superior cerebellar arteries, no perforators were seen at the trapped segment. The aneurysm sac was opened and approximately two-thirds of its thrombus was removed. Post operatively the patient did well for except an ipsilateral third cranial nerve palsy.

Case 2. A 7 year-old male was admitted with a sudden complete left third cranial nerve palsy. This was associated with mild headache but no change in mental status. Non-contrast CT scan showed a 2.8 X 2.0 X 2.3 cm. hyperdense left parasellar lesion with densitometry similar to blood (Fig. 2 left). The sellar region appeared eroded. MRI showed a large sellar and suprasellar lesion with subacute blood at its posertosuperior margin (Fig. 2 center). MRA showed a lesion with two densities related to the left internal carotid artery and the parasellar area (Fig. 2 right). Since the subacute blood was associated with the suprachiasmatic artery, a DSA was done which showed an avascular lesion with no aneurysm formation. A prolactin level of 25,000 ng/ml, was reported and the patient was started on bromocriptine treatment.

Case 3. A 61 year-old female was admitted with a sudden complete right third cranial nerve palsy and numbness of the face along the V1 and V2 trigeminal distribution. CT scan showed a hyperdense parasellar mass. MRI revealed a 3 X 3.5 X 3.2 cm. mixed intensity lesion with a hyperintense peripheral rim (Fig. 3 left).
MRA showed a high signal intensity lesion at the same location with similar dimensions (Fig. 3 center). DSA showed filling of a cavernous aneurysm that was smaller than the MRI and MRA images (Fig. 3 right). At surgery, the aneurysm was found to be completely extradural. In view of the location and the age of the patient, a Silberstone clamp was placed on the common carotid and closed gradually to reduce the flow into the aneurysm.

Case 4. A 61 year-old female was admitted after a sudden, right-sided headache, nausea and blurred vision, followed by a brief loss of consciousness. Neurological examination showed nuchal rigidity without focal deficits. Head CT scan showed a hematoma in the right Sylvian fissure. The MRI revealed a 2 cm. mixed intensity lesion with peripheral edema also in the right Sylvian fissure (Fig. 4 left). MRA showed a lesion of similar diameter related to the bifurcation of the middle cerebral artery (MCA) with marked narrowing of the artery immediately preceding the lesion (Fig. 4 center). These findings suggested an aneurysm of the MCA with associated spasm. DSA showed what seemed to be a small aneurysm associated to the bifurcation of the MCA (Fig. 4 right). The patient was operated on the sixteenth day after her hemorrhage and a non thrombosed 7 mm. aneurysm was found after a large clot was removed from the Sylvian fissure.

Results

In one patient, the diagnosis of giant cerebral aneurysm was correctly made using the MRA. The size suggested by the MRA was comparable with the size demonstrated by the DSA. In two patients the giant cerebral aneurysm was correctly identified by the MRA, but its size was incorrectly concluded. One patient had a partially thrombosed cavernous sinus aneurysm and the other had a small MCA aneurysm with an intracerebral clot surrounding the sac. In both cases, the size obtained from the MRA was larger than the true filling part of the aneurysm demonstrated by the DSA. One patient had a posterior fossa giant aneurysm in which the MRA showed flow inside the aneurysm, but the DSA showed no flow. It was confirmed at surgery that the aneurysm was completely thrombosed. In another patient, the diagnosis of a giant cerebral aneurysm was incorrectly made using the MRA. The image of the MRA suggesting a giant cerebral aneurysm was in fact that of a giant pituitary macroadenoma with hemorrhage. The intratumoral clot was confused with an aneurysmal sac. Table 1 summarizes the findings for each patient. In 20% of the cases, the correct and exact diagnosis was made using MRA; in 60% a correct diagnosis was made but the size, or the presence of flow, was not correctly identified; in 20% the diagnosis was incorrect.

Discussion

MRA is a truly non invasive and useful method to examine cerebral aneurysms, but artifacts can be produced due to the techniques used to characterize the aneurysms. This is frequently seen in giant aneurysms since partial thrombosis occurs in 48-76% of the cases (6). The high incidence of thrombus formation within a giant cerebral aneurysm is related to the critical ratio between the aneurysmal volume and the aneurysmal neck size (7). Unless a giant cerebral aneurysm is completely thrombosed, there is no protection against subarachnoid hemorrhage. In those cases in which the aneurysm is completely thrombosed, surgery is done to decompress the neural structures. When operating a tumor, the diagnostic possibility of a giant thrombosed aneurysm has to be kept in mind, even if angiography has been performed. In the four cases presented, the combination...
of MRA, CT, and MRI findings helped us to correctly identify and characterize the aneurysms. These findings facilitate the organization of specific management strategies for each case.

Partially thrombosed giant aneurysms produce a flow void in the MRI and different signal intensities from the various stages of the clot (8). There are certain limitations in the use of MRA with giant aneurysms. Slow flow and turbulent flow lesions are poorly visualized owing to the saturation of the moving spins residing for too long within the excited volume, so MRA will underestimate the size of larger aneurysms (9,10). Subacute, intraluminal thrombus produces an artifact which falsely simulates flowing blood on the maximum intensity projection (MIP) (9,11). Edelman et al. reported that MRA fails to detect thrombosed cerebral aneurysms and those containing very slow flow (9). Schuierer et al. recognized that partially or completely thrombosed cerebral aneurysms can appear as a vascular structure on MRA, and that dolichoectatic vessels, or large aneurysms with slow flow, may have a loss of signal due to the saturation effect, so that they cannot be detected by the MIP algorithm (12).

Time-of-flight (TOF) imaging relies primarily on flow related enhancement produced by flowing blood which yields a greater signal intensity than the surrounding stationary tissue. Non saturated spins, like blood, moving into the image, will appear as a high signal when compared to saturated spins from stationary tissues. A major limitation of the TOF is its relative inability to cancel signal from stationary spins. In particular, short T₁ material, such as fatty tissues and subacute hematoma containing methemoglobin, will appear bright, simulating flow enhancement. The MIP algorithm cannot discriminate between flow-related enhancement and subacute thrombus; as a result, both are simultaneously projected as hyperintensity. Lewis et al. found that the signal loss from progressive saturation of inflowing spins can be partially controlled by using thinner imaging volumes or 2-D images (13). However, TOF MRA has the advantage of using a shorter TE, thus it is less susceptible to signal loss.

Phase-contrast (PC) imaging relies primarily on velocity induced phase shifts to distinguish flowing blood from stationary tissues. Two or more acquisitions with opposite polarity of the bipolar flow-encoding gradients are subtracted to produce an image of the vasculature. Because stationary tissues yield no phase shifts, a subtraction of the acquisition results in cancellation of the stationary tissue signal. The background is completely suppressed, so bright fat and thrombus are suppressed. The PC MRA shows only the patent lumen of the aneurysm in a manner analogous to conventional angiogram (14). Blood flow in an aneurysm is remarkably complex and changes during the cardiac cycle (15). In addition, the flow velocity in the aneurysm is much slower than in the parent artery. Therefore, these complex, slow and disturbed flows are the major mechanisms of loss of signal on the 3-D PC technique. Non laminated turbulent flow may cause a significant loss of signal on the PC MRA.

Houston et al. found that cerebral aneurysms smaller than 15 mm were equally demonstrated in the TOF and the PC imaging techniques, but in larger aneurysms the PC technique was superior (14). The use of gadolinium enhancement improves the visualization of the vasculature, but also increases the background noise with TOF imaging due to enhancement of normal structures, such as the nasal mucosa, choroid plexus, and pituitary gland (14). Table 2 lists the advantages and disadvantages of both techniques. Although Houston reported that MRA had a sensitivity of 75% - 87.5% to detect cerebral aneurysms greater than or equal to 5 mm, they had a case in which a thrombus was incorrectly identified as a large aneurysm (16).

<table>
<thead>
<tr>
<th>Time of flight</th>
<th>Phase contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Shorter time to perform</td>
<td>1. Fat and thrombus are suppressed</td>
</tr>
<tr>
<td>2. Minimal signal loss arising from pulsatile and complex flows</td>
<td>2. Potential for qualitative flow measurements</td>
</tr>
<tr>
<td>3. Better definition of smaller vessels</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Advantages and disadvantages of MRI pulse sequences

Tsuruda had used a direct comparison of the MRA with the T₁-weighted spin-echo images to distinguish between thrombus and flow-related enhancement in cerebral aneurysms treated by endovascular balloon occlusion (17). Thrombus has a similar appearance on both studies, whereas flow-related enhancement on MRA should be replaced by flow void on the spin-echo study. A giant cerebral aneurysm filled with subacute thrombus with shortened T₁ may cause a high signal intensity on a 3-D TOF MRA and no signal on 3-D PC MRA. However, DSA or conventional angiography will definitely confirm if there is blood flow within the aneurysm. Due to the frequent presence of clots within these aneurysms, angiograms will often underestimate the true size of the aneurysm. Despite MRA advantages over DSA, the characterization of giant cerebral aneurysms by MRA will depend on its
combination with other techniques. MRA functions primarily as a screening tool and should always be interpreted with other imaging modalities (18).

Conclusions

The cases presented illustrate the idea that although giant cerebral aneurysms can be detected by MRA, a problem arises in the characterization for flow and size. The easiest way to identify and characterize an aneurysm is by doing a DSA, but if the data obtained from the MRA is combined with that of the CT scan and the MRI, a clear picture can most of the times be obtained using these non invasive studies. The use of this principle is helpful in avoiding complications in diagnosis and management.

Resumen

La angiografía por resonancia magnética se está utilizando para detectar aneurismas cerebrales. El diagnóstico de aneurismas cerebrales gigantes puede ser confuso y difícil de obtener. En este estudio se analizaron cinco pacientes consecutivos con el diagnóstico presuntivo de aneurisma cerebral gigante. En 20% de los casos se obtuvo un diagnóstico correcto y en 20% de los casos se obtuvo un diagnóstico incorrecto. En los restantes casos se obtuvo un diagnóstico correcto pero se identificó incorrectamente el tamaño del aneurisma o la presencia de flujo arterial. Se recomienda que se combinen los hallazgos de la angiografía magnética con los de la tomografía computarizada y la imagen de resonancia magnética para la identificación de los aneurismas cerebrales gigantes.

References

