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A new door has been opened to health professionals
since the completion of the map of the human genome
was announced in 2003, coinciding with the 50th

anniversary of the discovery of the DNA helical
structure by Watson and Crick in 1953. The continuous
updating of the technology has enabled scientists to
simultaneously analyze thousands of variables for
genome analysis. These advances have created new
opportunities to locate genes, to assess the gene-gene
relationship, to measure the gene-environment
interaction, to describe gene products, and to evaluate
the gene-disease relationship. In epidemiology, new
strategies have been developed to determine cause-effect
relationship in case-control studies and cohort studies.
With the information provided by the Human Genome
Project, new epidemiological designs and new statistical
methodology have been developed. The addition of

molecular biology to traditional epidemiological
approaches has given birth to a new discipline known
as genetic epidemiology. The objective of this paper is
to provide an introduction to concepts needed for
assessing the association between genes and specific
diseases in population based studies. Firstly, a
description of the genetic concepts is presented as a
framework for the epidemiological designs and the
statistical procedures that have been utilized in genetic
epidemiology. Then, a description of the different
designs in genetic epidemiology is presented with the
most recent publications. Finally, some considerations
in the statistical analysis for genetic epidemiology are
discussed.
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I) The molecular biology of the gene

1.1 Intruduction

The human body is made up of millions of cells,
where each cell contains a complete copy of a
person’s genetic plan or blueprint. This genetic

plan is packaged in the cells in the form of chromosomes
that are made up of strings of genes. The chromosomes,
and therefore, the genes, are made up of DNA. The
chromosomes and genes are contained in the nucleus of
every cell, except for red cells, which have no nucleus
and, thus, no  chromosomes. A small number of genes are

also contained in tiny packages in the cell called
mitochondria which are the energy centers of the cell. The
entire DNA in the human cell makes up what is called the
human genome.

 A gene is a specific segment of a DNA molecule that
contains all the coding information necessary to instruct
a cell to synthesize a specific product, such as an RNA
molecule or a protein (enzymes, hormones, and antibodies)
needed for the structural and metabolic functions of the
cells, and thus of the entire organism. Each gene provides
a blueprint for the synthesis (via RNA) of enzymes and
other proteins and specifies when these substances are
to be made [Watson et al., 2004].

The word gene was derived from Hugo De Vries’s term
pangen, itself a derivative of the word pangenesis which
Darwin (1809-1882) had coined in 1868. The word
pangenesis is made from the Greek words pan (a prefix
meaning “whole”, “encompassing”) and genesis (“birth”)
or genos (“origin”).

In 1953, James Watson (1928-) and Francis Crick (1916-
2004), using X-ray diffraction analysis of crystallized DNA,
discovered that native DNA consists of two long chains
(strands) forming a double-stranded helix. The coiled
polynucleotide chains of DNA are held together by
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hydrogen bonds between the bases of the opposite
strands. The bases occur as a specific set of
complementary pairs (Figure 1). Adenine (A) pairs only
with thymine (T), and guanine (G) pairs only with cytosine
(C). The number of complementary base pairs is often
used to describe the length of a double stranded DNA
molecule. For DNA molecules with thousands or millions
of base pairs, the designation of kilobase pairs or megabase
(Mb) are used, respectively. For example, the human
chromosomes X and Y have approximately 155 Mb and 57
Mb, respectively (www.ensembl.org).

Figure 1.   DNA Helix

The AT and GC base pairs lie within the interior of the
molecule and the linked phosphorus and deoxyribose
components form the backbone of each strand. The terms
used to specify the directions of the strand are 3’ and 5’.
The two strands of a duplex DNA molecule run in opposite
direction (antiparallel chains). One chain is oriented in a 3’
to 5’ direction and the other in a 5’ to 3’ direction. Because
of base pairing requirements, when one strand of DNA
has the sequence of bases 5’-TAGGCAT-3’ the
complementary strand must be 3’ATCCGTA-5’. In this
case, the double-stranded form would be:

                                      5’-TAGGCAT-3’
                                      3’-ATCCGTA-5’

Chemically, each gene consists of a specific sequence
of nucleotides. Each nucleotide is composed of three
subunits: a nitrogen-containing compound, a sugar, and
phosphoric acid. The genes have coding (exons) and not
coding (introns) segments in the coding process. Genes
may vary in their precise makeup from person to person.
Also, different genes are “active” in different cell types,
tissues, and organs; but not all the genes in the cell are
“active” in every cell. However, despite the wide range of
phenotypes observed in the human race, our DNA has
little variability. Approximately, 99% of the nucleotides in
DNA are the same in all humans. Those DNA locations, or

loci, that vary from person to person are said to be
polymorphic [Pasternak, 2005].

The process of DNA synthesis is called replication. As
predicted by the Watson-Crick model of DNA, each strand
of an existing DNA molecule acts as a template for the
production of a new strand, and the sequence of
nucleotides of a synthesized (growing) strand is
determined by base complementary [Watson et al., 2004].

Proteins are required for the structure, function, and
regulation of the body’s cells, tissues, and organs. Proteins
are essential components of muscles, skin, bones, and the
body as a whole. A protein chain consists of a specific
sequence of units called amino acids. All amino acids have
the same basic chemical organization. There is a central
carbon atom (a-carbon) with a hydrogen (H), carboxyl
group (C00-), amino group (NH3

+), and an R group attached
to it. An R group can be any one of 20 different side chain
(groups) that make up the 20 different amino acids found
in proteins. When R, for example, is a methyl group (CH3),
then the amino acid is Alanine.

The vast majority of genes encode information for the
production of protein chains. Proteins are essential
polymers (macromolecular) involved in almost all biological
functions. They form structures within the cell such as
the protein called keratin, from which hair is made; others
are called enzymes which help to produce chemical
reactions, such as digesting food.  They catalyze chemical
reactions; transport molecules within cells; escort
molecules between cells; control membrane permeability;
give support to cells, organs, and body structures;  cause
movements; provide protection against infectious agents
and toxins; and regulate the differential production of other
gene products. Proteins range in length from approximately
40 to more than 1000 amino acid residues. A protein folds
into a particular shape (configuration) depending on the
location of specific amino acid residues and the overall
amino acid composition. In addition, many functional
proteins consist of two or more polypeptide chains (a
linear series of amino acids linked by peptide bonds). In
some cases, a set of multiples of the same polypeptide
chain is required for an active protein molecule (homomeric
protein). In other instances, a set of different protein
chains (subunits) assembles to form a functional protein
(heteromeric protein).

The biological decoding of genetic information is carried
out through intermediary  RNA molecules synthesized
from a segment of the DNA.  Instead of thymine, the base
uracil (U) is found in RNA. Uracil pairs with adenine in an
RNA molecule. Most of the RNA molecules are single
stranded, although often, within a single chain, segments
of nucleotides are complementary to each other and form
double-stranded regions. The production of RNA from
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DNA is called transcription. As transcription proceeds,
the newly synthesized RNA is released from DNA, and
the DNA helix is reconstituted. The functional
transcription product of a structural gene is an mRNA.
Hundreds of different mRNAs can be in one cell. By
contrast, there are four type of ribosomal RNA (rRNA);
three of the rRNAs combine with a set of proteins to form
a ribonucleic protein complex called the large ribosomal
subunit, the other rRNA combines with another set of
proteins to form a small ribosomal subunit. In the cytoplasm
of the cell, one large and one small ribosomal subunit
combine to form a ribosome. An active cell can have
thousands of ribosomes [Watson et al., 2004].

There are approximately 50 different types of transfer
RNA (tRNA) molecules in a cell that are actively
synthesizing protein. The tRNAs range in length from
about 75 to 93 nucleotides. There is at least one tRNA for
each of the 20 amino acids found in proteins. An amino
acid is linked enzymatically by its carbonxyl end to the 3’-
end of a specific tRNA; after the binding of a particular
amino acid to its tRNA, the tRNA is said to be charged.
The tRNA molecule has three unpaired nucleotides, which
together are called the anticodon sequence; this sequence
plays an important role in the formation of the linear array
of amino acids that constitute a protein. A codon is a
nucleotide triplet of bases recognized by anticodons on
transfer RNA and hence specifying an amino acid to be
incorporated into a protein sequence. Each amino acid
has more than one codon. The stop codon determines the
end of a polypeptide. The process of decoding the
information content of an mRNA into linear sequence of
linked amino acids is called translation.

The codon in the mRNA that immediately follows AUG
dictates the anticodon sequence and, therefore, which
charged tRNA will bind to the ribosome complex. If the
second triplet of nucleotides in the mRNA is CUG, then
the charged tRNA will bind with the anticodon sequence
GAC. This charged tRNA carries the amino acid leucine.
Once in place, a peptide bond is formed between the
carboxyl group of the methionine and amino group of the
leucine. If the third codon is UUU, then the charged tRNA
with an AAA anticodon will bind. In this case, the tRNA
with an AAA anticodon carries the amino acid
phenylalanine. Once in place, the linkage between the
carboxyl group of leucine and its tRNA is broken; as a
consequence a peptide bond is formed between the
carboxyl group of the leucine and the amino acid of the
phenylalanine.

 The succession of operations including binding of a
charged tRNA by means of anticodon-codon pairing,
peptide bond formation, ejection of an uncharged tRNA,
and translocation, continues until all the amino acids

encoded by the mRNA are linked together. A coding region,
exon only, of 1 kb gives rise to a protein with approximately

333 amino acids. The total coding region of a gene can
be from .5 to about 15 kb in length. The complete genetic
code consists of 64 codons. Three codons (UGA, UAG,
UAA) are reserved for stop and one (AUG) for initiation.
There is one codon (UGG) for the amino acid trytophan.
For the rest of the amino acids found in proteins, there are
least two to six codons. For example, leucine has six
codons: UUA, UUG, CUU, CUC, CUA, and CUG. These
characteristics define the degeneracy (changes of
nucleotide in the third or second position of a codon) and
redundancy (more than one codon per single amino acid)
of genetic code; however, a codon specifies only one
amino acid (no ambiguity) [Watson et al, 2004].

Once the sequence of amino acids that make up a
particular protein is assembled, the protein dissociates
from the ribosome and folds in to a specific three-
dimensional form. The function of a protein ultimately
depends on its amino acid sequence and its three-
dimensional structure. Currently, functions have been
assigned to only a small proportion of the genes in even
the best understood of model organisms. In order to assign
function to the remaining genes, it is helpful to examine
the expression patterns of these genes in various tissues.

Microarray technology developed over the past several
years now allows the measurement of mRNA levels for
tens of thousands of genes simultaneously. The
applications of microarrays for the study of neurological
diseases, like multiple sclerosis, Alzheimer’s disease or
neuromuscular diseases are promising, both for generating
new pathophysiological hypotheses and for enabling new
molecular classifications [Ducray et al., 2007]. Microarray
data analysis on cancer research has opened new avenues
for diagnosis and therapeutic interventions [Cowell et al.,
2007]. Our capabilities for diagnosis and understanding
of infectious diseases have also been enhanced by using
microarrays [Palacios et al., 2007 and Sariol et al., 2007].

1.2) Nucleotide Sequence Alteration: Mutation
The replication of DNA is not a perfect process; errors

that affect one or more base pairs can occur. In addition,
external agents (radiation, radioactive compounds,
ultraviolet, chemicals…) can permanently alter the
sequence of nucleotides of a DNA molecule. A change in
genetic material is called mutation. An agent that induces
a mutation is a mutagen. In the absence of any evidence
of a mutagenic effect, a naturally occurring mutation is
considered spontaneous. Mutation can occur anywhere
in the total DNA (single base pair or large region of a
chromosome) of a organism. In humans, approximately
95% of DNA does not code for any gene products. As a
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result, many mutations have no effect on the phenotype
because they are located in regions of the genome that
have no impact on cellular functions.

The bases guanine and adenine have the same
fundamental chemical structures and fall into the class of
compounds called purines. Similarly, the bases cytosine
and thymine are chemically related to each other and are
part of the compounds called pyrimidines. Any substitution
of a purine with a different purine (G↔A) or a pyrimide
with a different pyrimide (T↔C) in a DNA molecule is a
transition mutation. A transversion mutation is any
substitution of a purine by a pyrimidine or vice-versa
(G↔T, A↔T, G↔C, A↔C). A base substitution within
the coding region of a structural gene can change an mRNA
codon and lead to the insertion of a different amino acid in
the protein. The consequence of mutation of a DNA codon
depends on which nucleotide pair is changed, the nature
of the substitution, the specificity of the new codon, and
the relative location of the mutated codon, among other
factors. In general, DNA codon mutations are classified
as silent, neutral, missense, or non-sense. A silent mutation
occurs when there is a change in a DNA codon, but the
amino acid that is inserted into a protein is not changed;
for example, when the DNA codon UUU is altered by the
mutation UUC, both produce the same protein,
phenylalanine. A neutral mutation represents a nucleotide
change at the DNA level that alters a codon, so that another
amino acid is incorporated into the protein with no apparent
loss of function; for example, when the DNA codon CUU
(leucine) is altered by GUC (valine), both proteins have
similar physicochemical properties. A base pair
substitution producing a codon that specifies another
amino acid is a missense mutation; the severity of this
mutation depends on the nature of the substituted amino
acid and whether the original amino acid plays an essential
role in the function of the protein. A non-sense mutation
occurs when a nucleotide substitution changes a codon
that specifies an amino acid into one that is a stop codon;
for example, when the DNA codon UGG is substituted by
UAG (stop codon). The presence of a stop codon within a
mRNA causes an incomplete or truncated protein to be
produced [Watson et al., 2004].

When a base pair is either inserted into or deleted from
the coding region of a structural gene, the sequence of
codons can be changed, so that the new codons are
translated into a completely novel sequence of amino acids
bearing absolutely no resemblance to the original protein.
These types of changes are called frameshift mutations
because the reading frame of the normal array of a codon
is shifted. A frameshift mutation usually has a devastating
effect on the function of a protein, because of either protein
truncation or the addition of an aberrant string of the amino

acid. However frameshift is essential to guarantee the
proper replication of some viruses like Hepatitis B virus
and retroviruses including HIV. This mechanism allows
the translation production of different essential proteins
using the same coding genetic sequence [Knipe et al.,
1996].

By strict definition, recessiveness and dominance are
properties of the phenotype, although it is common to
refer to genes as recessive or dominant. Most mutations
have a recessive effect. In an homozygous recessive
individual, insufficient functional gene product is
produced, which, in turn, is responsible for an aberrant
phenotype. Hereditary folate malabsorption, a rare
autosomal recessive disorder that is caused by impaired
intestinal folate absorption and impaired folate transport
into the central nervous system, induces progressive
neurological impairment. However, there are a number of
human diseases that are the result of a single dominant
allele. A mutation that alters the amount of a gene product
(underproduction and overproduction), when a specific
amount is needed for normal activity, can cause a dominant
effect. For example, in metachondromatosis, the growth of
bones is affected, leading to multiple enchondromas and
osteochondromas mainly in tubular bones.  On the other
hand, underexpression of tumor suppression genes like
p53 is heavily associated to head and neck cancer and
lung cancer. In addition, dominant disorders occur when
either a toxic gene product or a novel protein with an
unusual mode of action is produced.

Other genetic alterations of DNA are the epigenetics
modifiers. The term ‘epigenetics’ defines all meiotically
and mitotically heritable changes in gene expression that
are coded in the DNA sequence itself. Three systems,
including DNA methylation, RNA-associated silencing,
and histone modification, are used to initiate and sustain
epigenetic silencing. Disruption of one or other of these
systems can lead to inappropriate expression or silencing
of genes, resulting in ‘epigenetics diseases’ [Egger et al.,
2004]. DNA methylation is an enzymatic addition of a methyl
group to cytosine residues at the C-5 position and occurs
at the CpG sequences (meaning a C nucleotide followed
by a G nucleotide). Although isolated CpG’s are usually
methylated, the human genome contains regions rich in
CpG’s, known as CpG islands. In humans, there are about
45,000 CpG islands, mostly found at the 5' ends of genes.
They are unmethylated, except for those on the inactive X
chromosome and some associated with imprinted genes.
Detection of regions of genomic sequences that are rich
in the “CpG” pattern is important because such regions
are resistant to methylation and tend to be associated
with promoter regions of genes which are frequently
expressed [Watson et al., 2004]. Methylation of these
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genes in cancer or perhaps with aging can lead to their
irreversible silencing [Thomas, 2004]. Histone acetylation
may regulate the expression of several genes in prostate
cancer; it has been reported that treatment of prostate
cancer cells with Histone Acetyl-transferases and
deacetylases (HDAC) inhibitors increased expression of
specific genes, and thus inferred a role for histone
acetylation in gene regulation [Cheng et al., 2005].

1.3) Human Chromosomes
Biological connectivity from one generation of humans

to the next is maintained by the fusion of a sperm from a
male parent with an unfertilized egg from a female parent
to produce a fertilized egg (zygote). It has been estimated
recently that a human being inherits 19,000 to 27,000 genes
from each parent (www.geneomics.energy.gov); however,
these numbers still are under debate, when the Human
Genome Project was completed, it was estimated around
35,000 genes. The strands of DNA are organized into
chromosomes. There are, under normal conditions, 23
chromosomes in the nucleus of the fertilized human eggs,
formed by 46 thread-like structures (23 pairs). After the
first embryonic cell division, each nucleus of the daughter
cells has 23 pairs of chromosomes and so on in the
consecutive divisions. Every nucleus cell has 23 pairs of
chromosomes. It is estimated that the human body has
3,237,658,234 base pairs (www.ensembl.org).

The cell division cycle (mitotic cycle) ensures that after
each cell division, each daughter cell receives the same
number of chromosomes. A process called meiosis ensures
that each gamete (sperm cell or unfertilized eggs) receives
only one member of each pair of 23 chromosomes.

Cells that contain one copy of the genome, such as
sperm or unfertilized egg cells, are said to be haploid (1N).
Fertilized eggs and most body cells derived from them
contain two copies of the genome and are said to be diploid
(2N). A diploid cell contains 46 chromosomes: 22
homologous pairs of autosomes and a pair of fully
homologous (XX) or partially homologous (XY) sex
chromosomes. Chromosomes can be seen under the
microscope only during cell division.  By stimulating cells
to divide and then treating them with chemicals that block
the last stages of cell division, one can observe and
photograph individual chromosome. The cell division
consists of the following phases: G1 phase, S phase (DNA
synthesis), G2 phase, and M phase or mitosis. During
mitosis, the mitotic cells can be divided in the following
stages:

i) Prophase - Chromosomes become visible as
extended double structure

ii) Prometaphase - Chromosome pairs become thicker
and shorter

iii) Metaphase - Nucleus is replaced by spindle;
becomes aligned on the spindle midpoint or equator

iv) Anaphase - Chromosome pairs split and move
toward the spindle poles

v) Telophase - Chromosomes reach the spindle poles
After these phases, cytokinesis begins, which means

that the original cell is divided into two cells; each daughter
has a complete set of chromosomes, one member of each
pair derived from each parent [Rappaport, 2005].

A comparison of the lengths and overall morphology of
the mitotic metaphase chromosome of human males and
females shows that 22 pairs are held in common. The
chromosomes, not all the same length, are autosomes. The
23rd pair includes the sex chromosome. In females, both
sex chromosomes have the same length and are designated
as X chromosomes. In males, the sex chromosomes consist
of one X chromosome and a smaller chromosome
designated as Y. Autosomal refers to any chromosome
other than a sex chromosome.

Chromosomes are often depicted as they would appear
during cell division: as two duplicate chromosomes, joined
to each other at the middle. The point where the two copies
or chromatids are joined is called centromere. The position
of the centromere aids in the identification of each one of
the 23 chromosomes. The centromere rarely is in the middle
of the chromosome, as a result, the short arm is identified
by p and the long arm by q.

The presence of an extra chromosome 21 (Trisomy 21)
in a zygote can lead to Down syndrome; Trisomy 18 to
Edwards syndrome, and Trisomy 13 to Patau syndrome.

The presence of an extra sex chromosome has less
biological impact than autosomal trisomy. The men with
XXY constitution (47, XXY; Klinefelter syndrome) tend to
be tall with long arms and large hands and feet;
occasionally, they have decreased capabilities but are
sexually competent. Females with Trisomy X (47, XXX)
experience major learning problems.  The only condition
with just one sex chromosome, the X chromosome, is
Turner syndrome (45, X). Women with Turner syndrome
are short and infertile, have a thick neck, and in some
cases, suffer from kidney and cardiovascular abnormalities.
A single Y chromosome constitution (45, Y) has never
been observed in a live birth [Rimoin et al., 2002].

Chromosomal structural changes occur when the DNA
of a chromosome breaks and is rejoined to another broken
piece of chromosome DNA forming an unusual
rearrangement. Environmental agents, such as X-rays and
chemicals, can induce chromosome breaks. These changes
can occur between different (non-homologous)
chromosomes. In some instances, parts of two non-
homologous chromosomes are interchanged without any
apparent loss of chromosomal material. The occurrence of



PRHSJ Vol. 26 No. 4
December, 2007

406

A Tutorial in Genetic Epidemiology
Suárez E., et al.

such mutual exchange is called reciprocal translocation
(balanced translocation).

 The ratio of the arms length (p/q), centromere index
(p*100/(p+q)), and the length of each chromosome relative
to the length of a haploid set were used initially to classify
chromosomes. By convention, chromosome 1 is the
longest autosomal chromosome, the next longest is
chromosome 2, and so on. Genes can be mapped because
they occupy a specific location (or locus) on a
chromosome.

The chromosome band is part of a chromosome which
is clearly distinguishable from its adjacent segments by
appearing darker or lighter by one or more banding
techniques. The bands may represent different DNA
sequences (nucleotide composition) along a chromosome,
localized structural features such as DNA loop formation
within sectors of a chromosome, or the presence of specific
proteins that bind to designated sections of a chromosome.
Bands are denoted with Arabic numerals starting from the
centromere and proceeding to the end of each chromosome
arm. For example, the bands of chromosome 9 and 22 are
(www.ensembl.org):

There are examples of disease-specific chromosome
rearrangements. Many of them are found in somatic cells
that have become cancerous. For example, the
chromosomal rearrangement t(9,22)(q34,q11, know as
Philadelphia chromosome) is present in about 90% and
95% of cases of chronic myeloid leukemia, a cancer that
causes an overabundance of certain types of white cells
called granular leukemia. t(9,22)(q34,q11) means a
translocation between chromosome 9 at band q34 and
chromosome 22  at band q11. This was the first chromosome
abnormality found in any kind of malignancy.

A phenomenon in which the disease phenotype
depends on which parent passed on the disease gene is
called imprinting. For instance, both Prader-Willi and
Angelman syndromes are inherited when the same part of
chromosome 15 is missing. The Prader-Willis syndrome is
a disorder characterized by short stature, obesity, and mild
to moderate learning difficulties. The Angelman syndrome
is characterized by gait disturbance, epilepsy, and sever
learning difficulties.  When the father’s complement of 15
is missing, the child has Prader-Willis syndrome, but when

the mother’s complement of 15 is missing, the child has
Angelman syndrome  [Rimoin et al., 2002].

The location of a gene on a chromosome is called a
locus (loci, plural). Variants of a single gene that occupy
the same locus on the two homologous chromosomes are
known as an allele.  Differences in alleles may give rise to
differences in traits or physical structure of an individual,
for example, eye color. A gene’s most common allele is
called the wild type allele, and rare alleles are called
mutants. The appearance of a trait is called phenotype
and the genetic constitution is the genotype. An organism
with different paternal and maternal alleles of a gene is a
heterozygote. The term homozygote refers to a gene in
which both maternal and paternal alleles are identical. If a
gene behaves as a dominant in the heterozygous, then an
organism with two dominant genes is said to be
homozygous dominant. An organism with two of the same
recessive genes is homozygous recessive. In humans,
some diseases result from dominant genes and some from
recessive genes [Watson et al., 2004]. The autosomal
dominant polycystic kydney disease (ADPKD) is the most
common inherited form of an autosomal dominant disease.

 It is one of the most common hereditary diseases and
the fourth leading cause of kidney failure. It seems to
affect all races and both genders equally. Symptoms
usually develop between the ages of 30 and 40, but they
can begin earlier, even in childhood. About 90% of all
ADPKD cases are autosomal dominant but they can be
autosomal recessive [Beer et al., 2006].

1.4) Mendel’s Laws of Inheritance
The first coherent description of the inheritance of genes

was presented by Gregor Mendel in 1865, based on
breeding experiments with pea plants, which were
summarized in the following principles [Watson et al., 2004]:

- Segregation of alleles -Each person carries two
copies of each gene, one inherited from each parent.
Alleles are transmitted randomly and with equal
probability (transmission probabilities). If we have
two alleles for a single major gene, then the
transmission probabilities will be ½.

- Independent assortment - The alleles of different
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genes are transmitted independently. Today it is
known that this does not apply when loci are located
near each other on the same chromosome.

A third concept considered part of the Mendelian
framework assumes that the expression of the genes is
independent of which parent they come from. In recent
decades, however, exception to these principles, such as
imprinting and other forms of parent-of-origin effects have
been recognized. Another assumption commonly made to
compute probabilities on pedigree is random mating, that
is, the probability that any two individuals will mate is
independent of the genotype. This assumption is
sometimes difficult to preserve due to the fact that
individuals are more likely to mate within their ethnic
groups [Thomas, 2004].

During the gamete formation, the allele of a gene pair is
segregated from each other. The fusion of the gametes
during fertilization is completely random. And, if there are
enough gametes, all possible combinations (fertilization)
will occur. The expected frequency of gametes combination
(fertilized eggs) is the product of the individual frequency
of the gametes that unite. For example, suppose that there
are only two alleles (r, R) for a single major gene. If a
parent is homozygous for either r or the R allele, then that
is the only allele he or she can transmit; so, the transmission
probability will be one. On the other hand, if the parent is
heterozygous, then either the r or the R allele can be
transmitted, both with ½ probability.  So, the joint effect of
two heterozygous parent’s genotype on the offspring’s
full genotype (the combination of the two transmitted
gametes) will be as follows:

The offspring’s genotypes are RR, Rr, and rr, while the
offspring’s phenotypes are R and r. The probability of the
offsprings’ genotype follows the Hardy-Weinberg
equilibrium:

The Hardy-Weinberg model describes and predicts
genotype and allele frequencies in a non-evolving
population, under the following basic assumptions: i) the
population is large (i.e., there is no genetic drift); ii) there
is no gene flow between populations, from migration or
transfer of gametes; iii) mutations are negligible; iv)
individuals are mating randomly; and v) natural selection
is not operating on the population. Given these
assumptions, a population’s genotype and allele
frequencies will remain unchanged over successive

generations, and the population is said to be in Hardy-
Weinberg equilibrium (HWE). The Hardy-Weinberg model
can also be applied to the genotype frequency of a single
gene. Then, the HWE is a simply prediction of population
genotypic frequencies based on allele frequencies:

So, the Hardy-Weinberg model consists of two
equations: one that calculates allele frequencies and one
that calculates genotype frequencies. Because this model
is dealing with frequencies, in terms of probabilities, both
equations must add up to 1. The equation for allele
frequencies for a gene with two alleles is: p + (1-p) = 1. If
we know the frequency of one allele (p) we can easily
calculate the frequency of the other allele (1-p). This is the
simplest case, but the equation can also be modified and
used in cases with three or more alleles. In a diploid
organism with alleles A and a at a given locus, there are
three possible genotypes: AA, Aa, and aa. If we use p to
represent the frequency of A and (1-p) or q to represent
the frequency of a, then we can write the genotype
frequencies as p2 for AA,  q2 for aa, and 2(p)(q) for Aa. The
equation for genotype frequencies is  p2+ 2pq + q2 = 1.
Testing for HWE is useful since there are several biological
and methodological explanations for deviation from the
expected HWE, such as:

(i) typing errors (e.g. missing heterozygotes), (ii)
assortative mating (e.g. negative assortative may result in
excess of heterozygotes), (iii) selection (e.g. heterozygote
advantage may result in excess of heterozygotes), and
(iv) population structure (e.g. two merged populations).

Under the HWE, the alleles frequencies can be used to
compute the frequencies of phenotype. For example, the
frequencies of the ABO blood group, which has three
alleles A,B, and O, where the allele O is dominant over A
and B, while A and B are co-dominant,  four possible
phenotypes can be defined: O (corresponding to genotype
OO), A (genotypes AA and AO), B (genotypes BB and
BO), and AB (genotype AB). Assuming HWE, the
population frequency of the four phenotypes is:

Gametes
production Mother Rr

1/2R 1/2r
Father Rr 1/2R ¼ (RR) ¼ (Rr)

1/2r ¼ (Rr) ¼ (rr)

P{RR}=p2, P{Rr}=2p(1-p), and P{rr}=(1-p)2, where p=1/2.

Pr(A)   =  Pr{genotype=AA ó AO ó OA) = OAA qqq 22 +
Pr(B)   =  Pr{genotype=BB ó BO ó OB}  =  OBB qqq 22 +
Pr(O)   =  Pr{genotype=OO}                     = 2

Oq
Pr(AB) = Pr{genotype= AB ó BA}           = BAqq2
where qA, qB, and qO are the allele frequencies of A, B, and

O respectively.

Alleles: frequencies                      Genotypes: frequencies
         A: p                                                      AA:  p2

         a :1-p                                                   Aa : 2p(1-p)
                                                                     aa  : (1-p)2
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Based on this example, the offspring of AxB mating
would produce the following phenotype probabilities:

As a consequence, the joint population probabilities
for each of the genotype combinations of the AxB mating
would be computed using Bayes’s theorem, as follows:

1.5) Genetic Linkage

One of the main objectives of genetic studies is to
determine the linear order of genes along a chromosome.
It is expected that if the genes of a chromosome always
remained together (completely linked) then they would be
passed on to the sex cells as an intact block, with no new
genetic combinations formed during the meiotic process.
When two consecutive markers derive from different
parental chromosomes, the event is called a recombination.
Genetic linkage is symbolized with either a single straight

Genotype Offspring Phenotype Probability

Father Mother A B O AB

AA BB 0 0 0 1
(AB)

AA BO ½ 0 0 ½
(AO) (AB)

AO BB 0 ½ 0 ½
(BO) (AB)

AO BO ¼ ¼ ¼ ¼
(AO) (BO) (OO) (AB)

Genotype

Father Mother Joint probabilities given AxB

AA BB Pr{AA,BB|AxB}=P{AA,BB}/P{AxB}=
= q2

A*q2
B  / K

AA BO Pr{AA,BO|AxB}=P{AA,BO}/P{AxB}=
= 2*q2

a*qB*qO  / K

AO BB Pr{AO,BB|AxB}=P{AO,BB}/P{AxB}=
= 2* q

2
B *qA*qO / K

AO BO Pr{AO,BO|AxB}=P{AO,BO}/P{AxB}=
= 4* qA*qB *q2

O / K

where K=Pr{AxB}=Pr{A}*Pr{B}=( OAA qqq 22 + )*( OBB qqq 22 + )

line or a single forward slash separating the genes that
reside on different members of a pair of homologous
chromosomes, for example,

The notation AB/ab signifies that the dominant alleles
(A,B) of two different gene loci are on one chromosome
and the recessive alleles (a,b) are on the homologous
chromosome. With complete linkage, a double
heterozygote (AB/ab) would produce only two types of
gametes:

Crossing AB/Ab with ab/ab would yield only two kinds
of genotypes (AB/ab and ab/ab) among the offsprings,
with no new genetic combinations. As mentioned above
for ADPKD, some alleles have a recessive effect, when
two copies of the same allele are required to produce certain
characteristic (trait). Other alleles have a dominant effect,
where a single copy of such an allele in the presence of a
recessive allele is sufficient to create the same biological
effects as two copies of the dominant allele. A cross with
complete dominance between a double heterozygote
(SsTt) and a doubly homozygous recessive (sstt) produce
four phenotypic classes representing four genotypes
among the offsprings:

In this case, there are two new genetic combinations
(Sstt,ssTt). If the frequency of these new genetic
combinations is less than 50% (not all possibilities have
the same probability), then the two gene loci are not
assorting independently, which means they are genetically
linked on the same chromosome; linkage can occur only if
two loci are on the same chromosome. The proportion of
new genetic combinations among the progeny of a cross
is the consequence of the frequency of reciprocal physical

 AB/ab, Ab/bB,….AB   Ab
ab    aB

,         ,.......

Parents Gametes
production Probability

AB/ab AB ½
ab ½

                  Mother ss/tt

Gametes
production St

Father Ss/Tt ST STst
St Stst
sT sTst
St Stst
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exchanges between the two gene sites on no sister
chromatics during meiosis. Chromatic is one of the two
chromosome strands of a duplicated chromosome
[Pasternak, 2005].

1.6) Genetic map
A genetic map is essential for determining the

chromosome locations of disease-carrying genes and a
physical map is required for isolating them. A physical
map can be constructed for human chromosomes. A
genetic map (linkage map, meiotic map) shows the order
of sites derived from meiotic recombination frequencies.
High frequencies of two or more alleles at one locus
increase the likelihood that parents will have different
genotype, making a linkage analysis feasible. It is
estimated that there are one million DNA base pairs in 1
centiMorgan (unit of recombination, or 1% probability of
crossover). Overall, the human female genetic map is 1.5
times longer than the male genetic maps.

The term “frequency of an allele” denotes the proportion
of a particular allele to the total number of alleles of a locus
on a particular population. For example, for a locus with
two alleles (A1,A2) in a population of 13,000 persons, with
3800 individuals who are A1A1, 6400 who are A1A2, and
2800 who are A2A2, the frequency of allele A1 would be:

The frequency of allele A2 would be:

In a large population, if the frequency of one allele at a
locus is .999 and the other is 0.001, the vast majority (99.8%)
of the individuals would be homozygous for the more
frequent allele. If two alleles were equally frequent (.5 each
one), then half the population would be heterozygotous
at the locus. As a consequence, human genetic analysis
depends on loci with frequently occurring alleles.

When two or more alleles of a locus occur with a
frequency of 0.01 or greater in a population, a genetic
polymorphism exists, and the locus is said to be
polymorphic. Polymorphism is a naturally occurring
variation in the sequence of genetic information on a
segment of DNA among individuals.

At the DNA level, a single nucleotide base (A or C or G
or T) difference between two homologous genes is
sufficient to create an allele. In many instances, a single
base pair change can cause a gene product to differ
drastically from the normal product. There should also be
a large number of single base pair differences, within a
gene, that have no effect on the gene product, and others

that occur without any biological consequences in
segments of the DNA that do not code for proteins. The
actual analysis of DNA samples from a group of individuals
is slightly more complicated because chromosomes occur
as pairs. However, each genotype (++, +-,—) produces a
distinctive pattern of fragments after hybridization
(process of base pairing of two complementary strands).
The pattern of DNA fragments that is the result of the
presence and/or absence of a mutated restriction
endonuclease site occurring frequently in a population is
called a restriction fragment length polymorphism (RFLP).

A set of alleles on a particular chromosome transmitted
from parent to child is called a haplotype. A diplotype is
defined for two haplotypes carried by an individual. When
a single site is examined, there are two possible haplotypes
(+,-); when two different sites on the same chromosome
are examined, there are four haplotypes (++, +-,-+,—), and
with n loci, there are 2n haplotype. Medelian framework
and the inheritance of an RFLP locus can be traced within
a pedigree. The determination of the alleles of an RFLP
locus in an individual is called haplotyping (geno-typing,
DNA typing). When two or more linked RFLP loci are
followed in a pedigree, it is possible to determine the
occurrence of a recombinant event, a new arrangement of
linked gene loci occurred in the offsprings as a result of
the crossing over (see figure 2).

Although RFLPs have provided a useful set of loci for
genetic studies, additional studies revealed that these loci
are not distributed uniformly throughout every

54.0
13000*2

64002*3800
alleles of #

A1 with persons of #
=

+
=

46.054.01
13000*2

64002*2800
alleles of #

A2 with persons of #
=−=

+
=

Parents   (I)                                1                       2

                                      O
Locus  A              +   -             -   -
Locus  B              +   -             -   -
Locus  C              +   -             -   -

Offsprings  (II)       1      2      3
                      II O                                               O
Locus  A +     - +   - -
Locus  B +     - +   - -    -
Locus  C +     - -    - -    -

The father (I-1) is heterozygous for three different RFLP loci on
the same chromosome, and the mother (I-2) is triply homozygous;
the offspring II-2 received from his parents a chromosome tha had
undergone a crossover event at locus C; the others offsprings
inherited non-crossover chromosomes from their parents.

Figure 2.  Occurrence of a recombinant event in three
Locus



PRHSJ Vol. 26 No. 4
December, 2007

410

A Tutorial in Genetic Epidemiology
Suárez E., et al.

chromosome. Fortunately, other polymorphic loci
consisting of simple repeating units of two, three, or four
nucleotide pairs (short tadem repeats) occur in large
numbers (>100, throughout the human genome and can
be scored readily with the polymerase chain reaction. The
dinucleotide repeat CA/GT occurs about 100,000 times
throughout the human genome:

Overall, these blocks consist of repeating CA/GT units
ranging in length from 2 to 40 units, with any block at a
particular chromosome location retaining more or less the
same number of units. In addition to CA dinucleotide
repeats, there are tri- and tetranucleotide repeats scattered
throughout the human genome. The entire strand of a
short tadem repeat is fewer than 400 bases in length
(www.rsc.org).

1.7) Genotyping Single-Nucleotide Polymorphisms
The most common type of polymorphism in the human

genome and easiest to measure is the single nucleotide
polymorphism (SNP) or point mutation. It thus, has been
the primary focus of recent genetic epidemiological studies
[Bhatti et al., 2006]. Transitions are the most common type
of SNP; transversions are less common [Thomas, 2004].
Many hemoglobinopathies are due to point mutations that
cause the replacement of an amino acid (misense), and,
are, consequently, abnormal protein products. The most
common, causing Tay-Sachs disease, is a 4-base pairs
insertion (frameshift); this  disease is a fatal genetic lipid
storage disorder in which harmful quantities of a fatty
substance called ganglioside GM2 build up in tissues and
nerve cells in the brain (www.ninds.nih.gov/disorders/
taysachs.htm).

Each individual has many single nucleotide
polymorphisms that, together, create an unique DNA
pattern for that person. SNP represents a site at which two
different nucleotide pairs occur at a frequency of 1% or
greater. In the human genome, the number of SNPs in
chromosomes 1, 10, and 20 are: 923864, 571051, and 315702,
respectively. Various strategies have been used to discover
SNPs [Bhatti et al., 2006]. Initially, differences within a
sequence tagged sites from different individuals revealed
candidate SNP sites. More recently, detailed analysis of
overlapping DNA sequence derived from the Human
Genome Project provide huge numbers of potential SNPs.
Additional studies are required to establish the extent of
the polymorphism; whether the flanking sequence acts as
effective primer regions; and whether a site is a reliable
DNA marker (a polymorphic gene whose physical location
is known) [Greg et al., 2004].

Single nucleotide polymorphisms (SNPs) are becoming
widely used as genotypic markers in genetic association
studies of common, complex human diseases. For such
association screens, a crucial part of study design is
determining what SNPs to prioritize for genotyping. The
data are accessible through search and browse in different
interfaces, allowing users to select proteins or SNPs of
interest using a number of identifiers and phenotypic
effects, selecting SNPs or proteins of interest based in an
overview of SNP properties and phenotypic effects and
links to SNP and protein entries in related databases like
dbSNP, UCSC browser, Hap map database, JSNP, HGV
base, etc.

Two general strategies for selecting SNPs in association
studies include haplotype tagging methods or targeted
selection of candidate genes and candidate variants.
Whole-genome scans will become increasingly
technologically efficient and economically feasible in the
near future. Meanwhile, scientists using candidate gene,
SNP, or haplotype approaches face the challenge of
choosing among 10 million possible SNPs or smaller
numbers of haplotype-tagging SNPs. In the context of
prioritization of candidate SNPs that are most likely to be
biologically relevant, numerous criteria are useful (Bhatí
et al., 2006). The candidate SNPs and genes should be
selected from publicly available sources based on some
of the following criteria: 1) functional relevance and
importance for biologically events; 2) degree of
heterozygosity, i.e., allele frequencies, as reported in
literature or databases; 3) position in or around the genes;
and 4) their use in previous genetic epidemiology studies.

II) Genetic Epidemiology

2.1) Introduction
The term genetic epidemiology was originally coined

by Neel and Schull in 1954 to describe the confluence of
two fields required for the study of common diseases,
their population distribution and etiology. Because of this
hybrid nature, genetic epidemiology draws from several
distinct related fields: population genetics, quantitative
genetics, epidemiology, and biostatistics. The heart of
genetic epidemiology understands the genetic and
environmental contribution to a disease and how they
relate to one another [Risch, 2002].

The understanding of the relationship between a
phenotype, whether it is normal or abnormal, and its
corresponding genotype depends, ultimately, on the ability
to isolate (clone) and characterize an individual’s gene(s).
The DNA sequence of a gene reveals the domain of the
encoded protein, how mutations in different exons are
responsible for a disease.  With a cloned gene, experiments

CACACACACACACACACACACACA..
GTGTGTGTGTGTGTGTGTGTGTGTG…
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can be developed to determine how various mutant gene
products destabilize the normal process. In addition,
diagnostic tests for specific gene mutations can be
developed from the DNA sequences of normal and mutated
genes [Pasternak J., 2005]. However, there are considerable
amounts of important ancillary details concerning genetic,
physical, and cytogenetic maps; location of known genes
and transcribed regions; base pair composition; single-
nucleotide polymorphism; repeated sequences; as well as
other features. With unambiguous information, a human
geneticist selects from only four different familial patterns
to determine the mode of inheritance of a trait that resides
at a single gene locus. Included in this category of a single-
gene (monogenic) traits are autosomal dominant (eg.,
Huntington’s disease, polycystic kidney disease, retinitis
pigmentosa,..), autosomal recessive (eg., cystic fibrosis,
b-Thalassemia, …), X-linked recessive (eg., hemophilia A,
color vision defect, ...), and X-linked dominant conditions
[Knipe et al., 1996].

2.2) Methodology
In genetic epidemiology, classical epidemiological

designs (i.e., case-control study and cohort study) have
been used to identify, directly or indirectly, the most
probable gene(s) to be causing a particular disease. Due
to the complexities in finding a particular gene, in genetic
epidemiology, different methods are used in a sequence
to better understand the location of particular gene(s),
usually the “starting point” depends on the resources
and information available. Some of these methods will be
carried out using DNA information, while others may only
use the phenotype characteristics and no DNA samples
(Thomas, 2004). A description of these methods is given
with the most recent publications, as follows:

Descriptive epidemiology - Use of routinary data, such
as standardized rates to compare groups, can provide clues
to whether genetic or environmental factors are involved.
For example, the difference of the age-adjusted incidence
rate of female breast cancer between Black and White
women population in the USA, that showed that Black
women have 10% less incidence than White [Althuis et
al., 2005], provided the clues to investigate for genetic
explanation in a particular ethnic group.

Familial Aggregation - The first step in pursuing
possible genetic epidemiology is usually to demonstrate
that the disease tends to “run in families” more than would
be expected by chance. Geneticists refer to such clustering
as familial aggregation. Family studies have a central role
in genetic epidemiology. Although epidemiology generally
involves studies of unrelated individuals, often using
population-based sampling, genetic epidemiology focused
on related individuals in the form of family histories or

opportunistically identified and sampled pedigrees [Hopper
et al., 2005]. This is often based on case-control studies
using family history or on twin or adoption studies. For
example, a family history has shown that the odds of having
breast cancer in women with a first degree relative with
breast cancer is 2.4 (95%CI: 1.84, 3.06) times this odds in
women with no first degree relative with beast cancer
[Slattery et al., 1993]. Another example is in prostate cancer,
where it has been estimated that 10%-15% of patients
with this cancer have at least one relative who is also
affected and first degree-relatives of patients with prostate
cancer have a two-fold to three-fold increased risk for
developing this disease [Gronberg, 2003].

Segregation analysis - The objective in this step is to
determine whether the pattern of disease among relatives
is compatible with one or more major genes or shared
environmental factors. For this purpose, no molecular data
are used, the aim being to test hypotheses about whether
one or more major genes and/or polygenes can account
for the observed pattern of familial aggregation, the mode
of inheritance, and to estimate the parameters of the best-
fitting genetic model [Thomas, 2004]. For example, a case-
control  study of breast cancer risk [Claus et al., 1998]
developed a model to estimate the probability of carrying
a mutation in BRCA1 or BRCA2 genes using 4730 cases
(20-54 years old) with histological confirmed breast cancer
and 4688 control subjects. In each instance, a woman’s
probability of being a gene carrier is calculated conditional
to the breast and ovarian cancer status of first-degree and
second degree female relatives as well as the current age
or age at death of any unaffected female relatives. The
model used Bayes Theorem within the Mendelian
framework, assuming an autosomal dominant transmission
for both BRCA1 and BRCA2 genes. Women with a
probability of less than or equal to 1% of carrying
mutations in either BRCA1 and BRCA2 genes were defined
as noncarriers. The results showed that among BRCA1
noncarriers, case subjects were 2.1 (95%CI: 1.2,1.3) times
more likely to report a first-degree or second-degree family
history of breast cancer, than were control subjects.
Noncarriers were predicted to have a lifetime risk of 9% of
developing breast cancer compared with a 63% risk for
carriers.  Thus, a woman who is identified as a carrier of
the risk marker and who also has a strong family history of
breast cancer is likely to possess a much higher risk for
breast cancer than a carrier with no known family history
of the disease.

Linkage Analysis - The objective is to find the location
of a major gene by looking for evidence of cosegregation
with other genes whose locations are already known (i.e.,
markers genes). Cosegregation is a tendency for two or
more genes to be inherited together, and hence for
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individuals with similar phenotypes to share alleles at the
marker locus. Recombination is very unlikely to occur
between two loci that are immediately adjacent to each
other. The probability of recombination increases with the
physical distance between two loci, from zero for adjacent
loci to a limiting value ½. It is this gradient in recombination
probabilities that allows linkage analysis to determine the
probable location of a gene. Thus, either a
nonrecombination haplotype ab or AB might  be
transmitted, each with probability (1-q)/2, or a
recombination haplotype aB or Ab, each with probability
q/2. The lod score (lods), which is equivalent to the
likelihood ratio test, has been used to assess the
hypotheses Ho: q=1/2, as follows:

where  is the likelihood function using the Binomial
distribution to determine the probability of the number of
recombinations in one family [Thomas, 2004]. In genetic
epidemiology, blood samples are taken from potentially
informative members of multiple case families and typed
for genetic markers at a known location. Extended families
with many cases are particularly informative for this
purpose and do not need to be population-based,
although large series of pairs of affected siblings can also
be used. Linkage analysis was used to localize BRCA1
and subsequently BRCA2, using extended pedigrees with
many cases of breast and ovarian cancer [Thomas, 2004].
Also, it was used to assess the association between the
body mass index (BMI) and chromosomes 6 and 11, across
six examinations of the Framingham Heart Study; where it
was shown that linked regions on these chromosomes
remained significantly associated [Atwood et al., 2006].

Fine mapping - The objective is to locate a gene using
haplotypes and linkage disequilibrium (LD). LD is defined
as the non-random association between two alleles at the
two different loci on the same chromosome. LD is often
termed “allelic association.” LD captures a deviation from
probabilistic independence among alleles or genetic
markers. For instance, LD between two alleles, say A and
B, can be quantified by measuring the following difference:

where P{AB} is the probability of observing haplotype
AB, P{A} is the probability of observing haplotype A,
and  P{B} is the probability of observing haplotype B.
Haplotypes, however, are not directly available in most
cases and their frequencies must be inferred
probabilistically from genotype data [Montana, 2006]. The
essential idea is that a marker locus in strong LD with a

disease causal locus is expected to be located nearby, as
follows:

LD mapping is carried out after genetic linkage between
a polymorphic locus and the disease gene is determined.
Then, members of families with a genetic disease within a
founder population are haplotyped with a number of
additional polymorphic markers on the same chromosome,
and statistical tests are run to determine which loci are in
linkage disequilibrium with the gene disease [Cheng I., et
al., 2006]. The statistical tests to measure LD are based on
the following measurement:

where Dmax is the maximum difference between Pr{AB}
and Pr{a}Pr{b}. D’=1 denotes complete LD, and historical
recombination results in the decay of D’ towards zero
[Wang et al., 2005].

Association with gene candidate - The objective is to
test different candidate genes with a particular disease.
The linked region may include a number of genes with
known functions that could be relevant to the etiology of
the disease. By comparing the genotype at these candidate
loci using the case-control epidemiological design
(population-or family based), one can test hypotheses
about whether they are actually associated with the
disease. The fundamental study designs and statistical
analysis methods for testing associations between genetic
polymorphisms and a disease are similar to classical
epidemiological designs; however, in order to homogenize
the genotype background, some control in the familial
background is recommended. In the web site Online
Mendelian Inheritance in Man at www.ncbi.nlm.nih.gov,
there are more than 15,000 known disease-causing
Mendelian disorders listed, and provides links to genes
that have been implicated in the etiology of complex
multifactorial diseases [Greg et al., 2004].

Cloning the gene and identifying mutations - The
objective is to determine the molecular sequence of the
disease. When a candidate region is sufficiently narrow
and no candidate gene has been found in that region,
DNA from that region can be exhaustively searched for
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polymorphisms. Polymorphisms in diseased persons that
are rare in non-diseased persons are considered to be
possibly causal mutation. For example, in the L-myc EcoRI
polymorphisms, that produces the S and L alleles, it has
been shown that individuals carrying the S allele tend to
have poor cancer prognosis; i.e., in lung cancer, the S/S
genotype was significantly associated with lymph node
metastasis (R=2.8, 95%CI: 1.8, 4.3), distant metastasis
(R=4.7, 95%CI: 2.4, 9.2), and clinical stage (R=2.3, 95%CI:
1.2,4.4) using the L allele (L/L genotype) as the reference
group [Spinola et al., 2004].

Characterization of the gene- The objective is to
describe the effect of the gene in an experimental setting.
Genetic epidemiology is applied to estimate the frequency
of the various mutations and the disease risk of these
mutations, including confounding and interaction
assessment; particularly with age, host, and environmental
factors.  The DNA sequence of the cloned gene reveals
the domain of the encoded protein, how mutation disrupts
its function, and the extent to which mutations in different
exons are responsible for a disease. After a putative
disease-causing gene has been cloned and sequenced, it
is screened for a nucleotide change involving one or a few
base pairs. The underlying principle of a mutation detection
assay is that the nucleotide sequence of the gene in
affected individuals will differ from a sequence content of
the same gene in individuals with a normal phenotype.  In
order to understand the role and function of the genes,
one needs the complete information about their mRNA
transcripts and proteins. Unfortunately, exploring the
protein functions is very difficult due to their unique 3-
dimentional complicated structure and a shortage of
efficient technologies. To overcome this difficulty one may
concentrate on the mRNA molecules produced by the
genes of interest (gene expression) and use this
information to investigate specific questions of the
functional roles of the genes. Several statistical methods
are currently used for the analysis of gene expression in
microarray data samples [Speed et al., 2003; McLachlan et
al., 2004]. These methods can be classified in two major
groups: i) methods that identify differentially expressed
genes, and 2) methods that classify the functional
dependency of genes. The objective of the first method is
to identify those genes that are consistently expressed at
different levels under different conditions using the
classical statistical test (t-test, ANOVA, Mann-Whitney
test,…) controlling the probability of false declaration
[McLachlan et al., 2006]. The second method pretends to
identify the shared patterns of expression across genes to
classify new diseases of subtype of diseases for
subsequent validation and prediction, and ultimately to

develop individualized prognosis and therapy, using
cluster analysis methods [McLachlan et al., 2004].

2.3) Analytical studies
Analytical study in classical epidemiology refers to an

observational study where at least two individual groups
(exposed and un-exposed or diseased or no-diseased) are
observed, prospectively or retrospectively, in order to
provide evidence of cause-effect relationship between an
exposure and a disease under study. For this purpose, a
comparison group is used as a reference to determine the
effect of the exposure factor or the occurrence of the
disease. The comparison groups (exposure vs. non-
exposure or disease vs. non-diseases) could be selected
from different sources (random survey of the population,
registries, death certificates,…) with the condition of
having similar genetic backgrounds. In genetic
epidemiology, the hereditary diseases are the diseases
under study and exposure is a genetic factor (directly or
indirectly the presence of a particular chromosome, DNA
regions, SNP,…).

One of the concerns in genetic epidemiology is to find
the comparison group, because the genetic information is
usually not available at the time of subject selection; so,
controls are often matched instead on race or ethnicity, so
they are more representative of the source population of
cases [Witte et al., 1999]. For example, a population-based
study of prostate cancer required that controls have three
of four grandparents from the same ethnic group as the
case to which they were matched [Whittemore et al., 1995].
However, race and ethnicity are of great concern for
potential confounding because of the variability within
the ethnic groups (i.e., Caucasian, African American,
Latino, Asian).  Geneticists call such confounding
“population stratification (admixture)”. Classically,
confounding is the distortion of the relationship between
the exposure of interest and disease due to the effect of a
true risk factor that is related to the exposure. Similarly,
population stratification is the distortion of the relationship
between a genotype of interest and disease due to the
effect of a true risk factor that is related to the genotype.
In population stratification, ethnicity acts as a surrogate
for the true risk factor, which may be environmental or
genetic; as such, controlling for ethnicity can reduce the
confounding bias. However, a recent study has shown
that self-reporting ancestry may not be a reliable method
to reduce the possible impact of population stratification
in genetic association studies [Burnett et al., 2006]. If the
population structure is recognized, it can be accounted
for either at the design or the analysis stage of a study.
Thus, the most important potential threat from population
structure arises when the structure is unknown, so-called
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cryptic substructure (Devlin and Roeder, 1999).
As a comparison group, spouses and adopted children

are of interest in family studies, since they are genetically
unrelated but are likely to share a common adult
environment and similar demographic  characteristics
(other than gender). For example, in a study of multiple
sclerosis (MS), the spouse did not experience an increased
risk of MS, suggesting no major role for environmental
factors acting in adulthood [Nielse et al., 2005; Thun et al.,
1999].  In another study related with colorectal cancer, it
was shown that the risk of colorectal cancer was 1.8
(95%CI: 1.2, 2.7) higher for the parents and siblings of the
patients with adenomas, as compared with the spouse
control, after being adjusted by confounding variables;
suggesting that genetic factors are related with this cancer
[Winawer et al., 1996].

One of the complications in genetic epidemiology arises
from the need to sample families rather than individuals,
which are harder to frame than individuals. In the study of
dichotomous diseases, a further complication is that
multiple-case families are the most informative, and these
are not efficient by simple random sampling of families.
For these reasons, most studies of familial aggregation of
disease are based on ascertainment of probands, followed
by the identification of their family member. The proband
is the individual who caused a family to be identified and
included in a genetic analysis, usually a person with the
disease under study. This selection procedure has been
called kin-cohort design; this design has several practical
advantages, including comparatively rapid execution,
modest reduction in required sample size compared with
cohort or case-control designs; however, this design is
subject to several biases, including the following: selection
bias that arises if a proband’s tendency to participate
depends on the disease status of relatives, information
bias from inability of the proband to recall the disease
histories of relatives accurately, and biases that arise in
the analysis if conditional independence assumption is
invalid or if samples are too small to justify standard
asymptotic approaches [Gail et al., 1999].

Ascertainment concerns the manner by which families
are selected for genetic analysis and how to correct for it
in likelihood models. Because such families are often
neither drawn at random nor selected according to well-
defined rules, the problem of ascertainment correction in
the genetic analysis of family data has proved hard-
wearing.

Two extreme ascertainment methods are complete
ascertainment and single ascertainment.  In complete
ascertainment, all families in a defined population with at
least one case are included; meanwhile, in single
ascertainment, the families are included with probability

proportional to the number of affected members.
  Population-based ascertainment of probands (both

diseased and non-diseased) is highly desirable for
generalization and validity. If population-based disease
and population registries are not available, then it is
essential to establish the representativeness of the
individuals with and without the disease, or, with and
without the exposure [Thomas, 2004]. When it is difficult
to ascertain all individuals in an area, a secondary base is
chosen. For example, if one were to select all children
diagnosed with cancer from a particular hospital, the
proper control group would be those children who would
have gone to that hospital had they developed cancer.
The difficulty of defining this group will vary with the
complexity of hospital referral patterns, which is especially
true for childhood cancer because individual hospitals may
have expertise related to specific diagnoses [Ross et al.,
2004].

Family- based studies remain widely used, and are being
further developed. However, family-based designs
typically imply higher genotyping costs and can face
difficulty in recruiting enough families. The simplest
established method for adjusting for the effects of cryptic
substructure is Genomic Control (Devlin and Roeder, 1999),
which considers the distribution over the null markers of
Y2, the Armitage test statistic that compares average allele
counts in cases and controls. Since few, if any, of the null
markers are expected to have a causal association with the
disease phenotype, any inflation of the empirical Y2 values
above their nominal distribution may be attributed to
demographic effects, such as cryptic substructure. Also
the statistical procedures for genomic control require the
genotypes of cases and controls at several “null” markers
that are not in linkage disequilibrium with the gene being
tested for association and may imply additional genotyping
costs, this is modest compared with the cost of
implementing a family-based design. In 2007, Setakis
demonstrated that using a logistic regression model
including the null markers like covariates in the model
protect against false positives and mitigate population
stratification effects under extreme ascertainment bias,
without significantly compromising power. These methods
do not require an estimate underlying subpopulations like
genomic control and it is easier to statistical modeling and
interpretation; despite the fact that population structure
is not explicitly modeled (Setakis et al., 2007).

2.3.1) Cohort Study
The cohort study is one of the important analytical

studies in epidemiology. In this study, there are at least
two groups of individuals that are exposure and un-
exposure to a specific factor, without the disease of interest
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at baseline. In genetic epidemiology, the exposure group
is composed of individuals who have a specific phenotype
or genotype characteristic (trait). The participants of the
cohort design are followed in time to determine the risk of
developing a specific disease. This study is desirable
because exposure precedes the health outcome — a
condition necessary for causation — and is less subject
to bias because exposure is evaluated before the health
status is known. As a consequence, it limits the possibility
of investigator preferences, or “bias,” affecting the
selection of study subjects. It is most useful for estimating
the incidences (risk of developing a disease) in the
exposed and un-exposed groups. The cohort approach
enables us to look for different outcomes because the
study subjects are selected on the basis of their exposure
only. The main disadvantages are the costs, the time
involved when the incidence is low, and the rate of lost to
follow-up.

An example of a recently published cohort study aimed
to determine the role of the hepatic lipase gene (LIPC-
480C>T) in predicting coronary heart disease and the
modified effect of physical activity, using a population-
based prospective study in the San Luis Valley of Colorado.
Hispanic and non-Hispanic White (n=966) were followed
for 14 years (1984-1998).  The results showed that LIPC-
480 TT genotype predicted an increase in coronary heart
disease in both ethnic groups, and physical activity altered
this relation; in normal levels of physical activity, the hazard
ratio was 2.6 (95%CI: 1.4, 4.8); while in persons with
vigorous physical activity, the hazard ratio was not
significant (est. HR=0.5, 95%CI: .1,2.2) [Hokanson et al.,
2003].

Another cohort study was developed to investigate
the role of Androgen receptor gene polymorphisms in
predicting the pathogenesis of benign prostatic hyperplasia
among 510 men randomly selected from Olmsted County
(Minnesota) from 1990 through 2000. Androgen receptor
CAG and GGN genotyping was performed. A CAG repeat
length of <21 was associated with enlarged prostate (est.
HR=1.4, 95%CI: 1.0,1.9) and serum prostate-specific
antigen level >1.4 ng/ml (est. HR=1.5; 95%CI: 1.1,2.0)
[Rosebud et al., 2004].

2.3.2) Case-control studies
The case-control design is another important analytical

study in epidemiology.  At the beginning of this design,
there are at least two groups of individuals that are already
diagnosed with and without the disease of interest, in
order to compare their level of exposure to a specific factor
in the past. Usually, the diseased individuals are identified
as cases; and the non-diseased individuals as control. In
genetic epidemiology, the exposure group is the

individuals which have a especific phenotype or genotype
(trait). The case-control design is recommended when the
incidence of the disease is low. The majority of the diseases
in genetic epidemiology are relatively rare, so case-control
studies are the most recommended design.

The main advantage of the case-control study is that it
enables us to study rare health outcomes without having
to follow thousands of people and is, therefore, generally
quicker, cheaper, and easier to conduct than the cohort
study. One of the major drawbacks of case-control in
conventional risk factor epidemiology is recall bias due to
the retrospective collection of exposure; however, in
genetic epidemiology this is not a concern, since a
subject’s constitutional genotype does not vary over time
and is not subject to the individual’s memory [Thomas,
2004].

In the conventional case-control, one randomly selects
controls from the source population of cases. The objective
in selecting controls is to sample individuals representative
of those who, had they developed disease, would have
been selected as cases, and to sample these controls
independently of exposure. In particular, controls should
be sampled from the set of subjects meeting any matching
criteria who have attained the age at which the case was
diagnosed, and who were still disease-free at that age
instead of population controls one could match each case
to his or her younger non-diseased sibling(s) by: 1)
constructing a likelihood which allows for the possibility
that the sibling will develop the disease before the case’s
age; and 2) choosing a reference date that is sufficiently
prior to the age at diagnosis of the case to include the
entire exposure period of the control [Witte et al., 1999].

 Another matching control could be an affected cousin
of each case; this control might allow for closer matching
on age than siblings control. In addition, there will be
more cousins than siblings available as potential controls.
However, cousin’s control does not provide absolute
protection from population stratification like sibling’s
control does, since cousins each have one parent that
typically did not descend from a common ancestor [Witte
et al., 1999].

Also, spouse has been chosen as a control in case-
control studies, particularly in family case-control studies.
Among the advantages of this type of control are
feasibility, higher response rate, and comparability of recall
among relatives in the case and control groups. However,
the choice of spouse control will often lead to a different
sex distribution among cases and controls if the risk of the
condition is sex-specific.  Another concern is that men
tend to marry younger women, which implies that the age
of siblings and parents of case and control may differ as
well. The main difference between the conventional case-
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control study and a family case-control study designed to
study familial aggregation is that the comparison takes
place between the relatives of cases and controls and not
between cases and controls [Verhage et al., 2003].

An alternative to case-control designs is matching each
case to a hypothetical control (pseudosibs) having the
possible combinations of parental alleles not inherited by
the case. For example, assume that a case’s parents have
genotype A/B and C/D, respectively, at a locus of interest,
and that the genotype A/C was transmitted to the case;
so, there would be three types of pseudosibs with
genotype A/D, B/C, and B/D. This study is also called
case-parent-trios. This design was recently used to
determine the relationship of the polymorphism, Val34Leu
in factor XIII, and intrauterine growth restriction (birth
weight below the 10th percentiles, according to gestational
age and sex); the results showed that this polymorphism
increased the risk of intrauterine growth restriction
approximately 70% when the parent of origin was the father
as opposed to the mother [Infante-Rivard et al., 2005].

One of the variations of a case-control study, not in
terms of the comparison group definition but in terms of
the controls selection, is the design called nested case-
control study (or the case-control in a cohort study). The
cases in this study that occur in a defined cohort are
identified and, for each case, a specified number of matched
controls is selected from among those in the cohort who
have not developed the disease by the time of disease
occurrence in the case. An example of this design was
applied in a cohort of Taiwanese men who were carriers of
hepatitis B virus; this condition has been associated with
hepatocellular carcinoma with higher incidence in males
than in females. The results of this study showed that
BMI modified the association of hepatocellular carcinoma
with testosterone and SRD5A2 genotype in men with low
BMI (<23.2), the adjusted OR for the SRD5A2
polymorphism VV versus the LL was  8.64 (95%CI: 2.8,
27.1)  [Ming-Whei et al., 2001].

III) Statistical considerations

3.1) Consideration 1: Correlated data
In genetic epidemiology, the Odds Ratio is the

measurement used to assess strength of association
between exposure and disease, usually estimated by the
logistic regression model [Xu & Shete, 2006; Zou, 2005].
This measurement will provide the clues for finding the
major gene(s) related with a specific disease, particularly
in case-control designs. Other measurements have also
been used for this purpose; for example, the Relative Risk
and Hazard Ratio, particularly in longitudinal studies, using

a Poisson regression model and Cox proportional hazard
model, respectively [Burton et al., 2005]. Usually, these
measurements are adjusted by the following factors: age,
sex, and ethnic group. In order to estimate these
measurements, the assumptions of correlated and non-
correlated data are considered; usually, when the design
involved the participation of all members of the family,
correlated data are expected. When non-correlated data
are assumed, the classical assumption of independent
observations is used to estimate the parameters of the
mentioned models, usually identified as Generalized Lineal
Model [McCullagh & Nelder, 1995]. In genetic
epidemiology, due to the population stratification bias, it
is sometimes difficult to support the assumption of
independent observations. So, to account for these
similarities in the participants, which may induce
correlation in the observations, generalized linear and latent
mixed model (GLLAMM), has been used [Snijders et al.,
2003; Kreft et al., 2004; Rabe-Hesketh et al., 2005]. In order
to exemplify this approach, we describe the logistic
regression (LR) model with two levels in a family-based
design, as follows:

where

.
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pij .- indicates the penetrance of the disease given ith genotype
(or ith risk allele) in family jth family, that is the conditional
probability that a randomly selected individual in the study
population possesses the disease, given the data.

  αj .- indicates the intercept in the linear combination of the
model for jth family.  When a random sample of families is
considered and in order to take into account the correlation among
members of the family, the intercept could be defined as follows:
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and the strength of the association between the disease and the
genetic factor is different between families, this parameter could
be defined, as follows:
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The methods to estimate the parameters of the
GLLAMM is a complex one, usually it is an interactive
process (one solution generates another solution). The
most frequently used methods are based on the a first- or
second- order Taylor expansion of the link function (in
logistic regression, the link function is the logit(p)=log(p/
(1-p)). When the approximation is around the estimated
fixed part, this is called marginal quasi-likelihood (MQL);
when is around an estimate of the fixed and random part, it
is called penalized or predictive quasi-likelihood (PQL).
Therefore, specialized software has been developed for
this purpose (such as MLwiN, Winbugs, HLM, and
VARCL), or new routines have been created in the classical
statistical programs (such as SAS, BMDP, STATA, and R)
(Snijders, 2003 Rabe-Hesketh, 2005).

One of the concerns, when the assumption of correlated
data is not considered is the possibility of producing biased
estimates of variance components and standard errors.
For binomial data, one potential cause of extra-binomial
variance is through a failure to identify correctly the
different level with the model. Omitting an important level
from the hierarchical structure implies that the within-group
(e.g., within family) clustering of responses will not be
adequately modeled and this can cause over-dispersion,
since the observed number of successes (e.g., number of
diseased persons) can only be assumed to belong to a
binomial distribution when the observations are assumed
to be independent (Leyland et al, 2004).

3.2) Consideration 2: Risk factor definition
The genetic risk factor under evaluation (Gi) can be

defined in different ways. For example, the genotype (set
of SNPs) at certain locus (i.e., AA,Aa,aa), combination of
geneotypes at different loci (i.e., AA/BB, AA/Bb, AA/bb,
Aa/BB, Aa/Bb, Aa/bb, aa/BB, aa/Bb, aa/bb),  alleles at
risk (yes/no), or combination of alleles at risk. As a
consequence, different association studies can be defined
for the same genetic risk factor [Balding, 2006].

3.3) Consideration 3: Selection of the Candidate
polymorphism

 If only one polymorphism is being implicated in disease
causation, usually, the classical approach of Logistic
Regression can be used [Hosmer & Lemeshow, 2000]. So,
the familial Relative Risk can be approximated by the OR
estimation, particularly when the penetrance is low. For
example, assuming that the correlation among members of
the same family was close to zero, the OR is estimated with
95% confidence as follows:

where            is the standard error of      .

The main concerns are the criteria to select the
polymorphisms as predictors of the logistic regression
model and the adjustments to estimate the FRR that should
be performed when several polymorphisms that could be
highly correlated between them are present in the model.
Another concern is that the number of candidate
polymorphisms in the regression models should be less
that the number of observations to have a unique solution.

3.4) Consideration 4: Definition of the Genetic Model
To estimate adequately the strength of the association

using the OR’s, it is recommended to define the genetic
model (i.e., dominant, recessive, multiplicative) previous
to determining the type of statistical description that will
be performed and the type of OR that will be estimated.
For example, a single SNP with alleles A and B, tested in an
unmatched case-control design, the following OR’s can
be computed according to the type of genetic model [Lewis,
2002]:
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The aims of the study and the information available will
determine the genetic model and the statistical analysis.
The complexities of the analysis are increased when the
number of alleles for each SNP is increased.

3.5) Consideration 5: Unphased data
The other concern, apart from the genetic model, is the

lack of information about the evolutionary history
(unphased data); for example, whether the marker allele
has paternal or maternal origin. Unphased data contain
less information about the evolutionary history of the
sample and increase the risk of inferring nonexisting
hotspots or, oppositely, failing to infer existing hotspots
and actual recombination [Wiuf, 2004].

3.6) Consideration 6: Number of Genes
Candidate gene. These studies might involve typing 5-

50 SNPs within a gene. The gene can be either a positional
candidate that results from a prior linkage study or a
functional candidate that is based, for example, on
homology with a gene of known function in a model
species. In this case, again, classical approach of LR can
be used; however, the problem of interaction among SNPs
or Epistasis has to be considered. The presence of
epistatasis is a particular cause of concern, since, if the
effect of one locus is altered or masked by effects at
another locus, power to detect the first locus is likely to be
reduced and elucidation of the joint effects at the two loci
will be hindered by their interaction [Cordell, 2002]. For
example, the following penetrance distribution for two loci
interacting epistatically in a heterogeneity disease model
(individual becomes affected, Y=1, through possessing a
predisposing genotype at either locus A or locus B):

Y Genotype at locus B

Genotype al locus A b/b b/B B/B

a/a 0 0 1

a/A 0 0 1

A/A 1 1 1

elucidate the underlying biological  mechanisms is likely
limited, and may require prior knowledge of the underlying
aetiology [Cordell, 2002].

Fine mapping. Often refers to studies that are
conducted in a candidate region of perhaps 1-10Mb and
might involve several hundred SNPs. The candidate region
might have been identified by a linkage study and contain
perhaps 5-50 genes. The concern for the statistical
modeling is that the number of predictors could be higher
than the number of subjects. One alternative that has been
proposed is to use principal components (PCs) analysis
to compute combinations of SNPs that capture the
underlying correlation structure within the locus, and then,
estimate the OR’s based on the PCs.  The PC approach
captures linkage-disequilibrium information within a
candidate region, but does not require the difficult
computing implicit in the haplotype analysis [Gauderman
et al., 2007].

Genome-wide. These studies seek to identify common
causal variant throughout the genome. A typical
genomewide association study is now expected to contain
data on ³ 500k assayed SNPs for several thousand of
individuals; however, increasing the marker density is not
a guarantee to detect association if the penetrance is low
[Thomas et al., 2005].  Cluster Analysis have been
recommended for GWA to initially group together genes
with similar pattern of expression and then test for a dense
set of markets [Eisen et al., 1998].

3.7) Consideration 7: Interaction terms
In complex diseases, such as diabetes, asthma,

hypertension, and multiple sclerosis, environmental and
socio-demographic effects have to be considered in the
model due to the multifactorial assumption of disease
causation. Therefore, adjusted OR’s can be estimated if
no significant interaction terms are part of the logistic
model. The interaction terms can be between SNPs or
between SNPs with environmental or socio-demographic
predictors, in particular, ethnic groups; for example,
assuming E is a risk allele (0,1) and two ethnic groups
(0,1), the most simple logistic regression model will be:

where                is the interaction term for the genetic risk
factor and ethnic group. However, to validate the adjusted
OR by ethnic group, it is necessary to previously assess
the interaction term  (             . If the interaction term does
not show significant effect (         , then OR adjusted by
ethnic group can be estimated. On the contrary, if this
term was significant (           , then an OR has to be estimated
for each ethnic group. So, the number of complications

However, another biological phenomenon would be if
the “effect” of locus B is in a recessive disease model (so
that two copies of allele B are required to cause disease)
then having two copies of alleles A at locus A is sufficient
to “mask” this effect, i.e., given genotype A/A at locus A,
the effect of locus B is not observed. So, direct biological
inference from the results of the statistical test is very
difficult. The degree to which statistical modeling can
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will arise when several confounding variables are
considered with a large number of SNPs, particularly in
the assessment and interpretation of  interaction terms.

IV) Conclusions

In most countries, the study of genetic epidemiology is
becoming an area of priority in public health. The Institute
of Medicine in the USA [IOM, 2002] has reported that
genetics is a critical area for public health education in the
21st century. Nine of the ten top causes of death in the
USA have a genetic component, among them are: heart
diseases, cancer, chronic lower respiratory disease,
diabetes, and Alzheimer’s disease. As a consequence, most
of the schools of public health are incorporating
bioinformatics and genetic epidemiology courses in their
curricular programs.

Genetic epidemiology is a “hunter process” to locate
the most probable gene causing a heritability disease. It is
a hierarchical process that combines observational design
(case-control and cohort) with experimental procedures
(DNA data), controlling the population stratification effect.
One of the major drawbacks of case-control in
conventional risk factor epidemiology is recall bias due to
the retrospective collection of exposure; however, in
genetic epidemiology this is not a concern, since a
subject’s constitutional genotype does not vary over time
and is not subject to the individual’s memory [Thomas,
2004]. The problem is that there are more than 19,000
possible genes and millions of combination of base pairs
for different mutants.

Population stratification (admixture) is of great concern
in genetic epidemiology that can lead to three distinct
problems: confounding; cryptic relatedness, resulting in
overdispersion of the test statistics (significance of any
test could be either increased or decreased); and selection
bias.  Family-based case-control designs reduce the
occurrence of these problems, but at the expense of some
loss of power from “overmatching” on genotype [Thomas
et al., 2005].

Statistical modeling offers an instrument to quantify
the association between the disease and the genetic risk
factor(s), using the Odds ratio, relative risks, and hazard
ratio. Classical statistical modeling has been used to
estimate these measurements, specially when the number
of SNPs is small, despite the fact that some interactions
can be difficult to interpret due to the Epistasis effect.
Multilevel modeling has been an alternative to control
correlation within subjects of the same class for family-
based studies. However, the problem of analyzing these
models could become very complex when fine-mapping

and genome wide association studies are considered,
particularly to assess interaction terms.

This introduction to the main aspects of genetic
epidemiology has been written to encourage new
investigators to get involved in this fascinating area,
particularly biostatisticians, epidemiologists, and other
scientists of related fields. We hope this objective has
been accomplished. Welcome to a new challenge!!

Resumen

Nuevas opciones han surgido para los profesionales
de la salud desde que se anunció en el 2003 que el genoma
humano se había completado, coincidiendo con el 50vo
aniversario del descubrimiento de la estructura elíptica
del ADN por Watson y Crick en 1953.  La actualización
continua de la tecnología ha permitido analizar
simultáneamente miles de variables para el análisis del
genoma humano. Estos avances han creado nueva
oportunidades para localizar genes, evaluar la relación
entre genes, medir la interacción entre genes y el medio
ambiente, describir el producto  de los genes, y evaluar la
relación entre gen y enfermedad. En epidemiología se han
desarrollado nuevas estrategias para evaluar la relación
de causa y efecto en estudios de casos y controles y
estudios de cohorte. Con la información provista por el
proyecto del Genoma Humano  se han desarrollado nuevos
diseños epidemiológicos y técnicas estadísticas. La
incorporación de la biología molecular a los métodos
tradicionales de epidemiología ha dado nacimiento a la
disciplina conocida con epidemiología genética. El objetivo
de este manuscrito es proveer una introducción a los
conceptos necesarios para evaluar la asociación entre gen
y enfermedad en estudios poblacionales. Primero, se
presenta una descripción de los conceptos genéticos,
como parte del marco teórico  correspondiente para los
diseños epidemiológicos y procedimientos estadísticos
que se han utilizado en epidemiología genética.
Posteriormente, se presenta una descripción de los
diferentes diseños de estudio en epidemiología genética
y las publicaciones más recientes. Finalmente, se discuten
algunas consideraciones estadísticas para el análisis de
los estudios de epidemiología genética.
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