Primary Endobronchial Anaplastic Large Cell Lymphoma in a Pediatric Patient

JHON GUERRA, MD*; MARIA ECHEVARRIA-ESCUDERO, MD*; NILKA BARRIOS, MD*; ROMAN VELEZ-ROSARIO, MD†

The authors describe a pediatric patient who presented with a 3-month history of dry cough, chest pain, progressive breathlessness, fever and recurrent pneumonia with atelectasis. A fiberoptic bronchoscopy revealed a whitish lesion at the left bronchus. A biopsy of the lesion demonstrated an anaplastic large cell lymphoma (ALCL). Evaluation for disseminated disease was negative. After the patient completed chemotherapy the lesion abated and she has been in complete remission for almost 4 years. Although extranodal involvement of ALCL is frequent at some stage of the disease, endobronchial involvement is extremely rare even in the presence of advanced disease. To our knowledge, this is the first primary isolated endobronchial ALCL described in a pediatric patient.

Key words: Primary Endobronchial Lymphoma, Childhood

Case Report

A 9-year-old girl with a negative history of significant medical illnesses, presented at the University of Puerto Rico Pediatric Hospital with the complaint of persistent dry cough of 3 months of duration, chest pain, breathlessness and intermittent low grade fever. The patient had visited her primary physician in four previous occasions with these symptoms. She was diagnosed with acute bronchospasm each time, and was treated initially with β-2-adrenergic agonists and leukotriene receptor antagonist without improvement. The chest radiograph revealed a left upper lobe lingular segment opacification and she was treated with antibiotics for 10 days for suspected pneumonia with associated atelectasis without response. Computed Tomography (CT) of the chest was done and revealed a 9.0 cm x 6.5 cm x 12 cm hypodense left upper lobe mass, with necrosis that encased the left hilum (Figure 1). A fiberoptic bronchoscopy was done confirming airway obstruction, and revealing a whitish round mass adhered to the antero-lateral wall at the lower third of left main bronchus (Figure 2). Section of the endobronchial biopsy (Figure 3) examined in our institution and reviewed by AFIP (Armed Forces Institute of Pathology), demonstrated a dense proliferation of discohesive anaplastic cells with enlarged round to pleomorphic nuclei with abundant cytoplasm. Immunohistochemical studies of the tumor cells were positive for LCA, CD30, ALK1, CD43, TIA-1 and CD7 and negative for Pan-keratin, CD3, CD20, CD99, CK7, CK20, chromogranin, synaptophysin, NCAM (CD56), S100, TTF1 and mucicarmine skin, which was interpreted as indicators

![Figure 1. Chest Computed Tomography Scan shows a left upper lobe mass with increase areas of necrosis and encasement of the left hilus.](image-url)
Figure 2. (A)(B)(C) Endobronchial bronchoscopy sequence demonstrates a whitish round mass in the left main bronchus of an histological diagnosis of anaplastic large cell lymphoma (ALCL) CD30+ and ALK1+, T-cell type. Remarkable laboratory findings included high lactate dehydrogenase (LDH) levels and sedimentation rate, elevated concentrations of immunoglobulin M and slightly low levels of immunoglobulin G. There was also evidence of past CMV infection, but negative EBV and HIV Elisa titers. These results are presented in table 1. Bone marrow aspiration and biopsy showed normal marrow elements which included cerebrospinal fluid analysis, CT of the abdomen, CT of the pelvis and bone scintigraphy, were negative. Whole body gallium scan revealed a large gallium avid lesion in the left hemithorax. She received induction chemotherapy with vincristine, prednisone, doxorubicin, and intrathecal methotrexate. Following induction chemotherapy, she was evaluated with Chest CT Scan and it revealed minimal residual disease of left hilum and left upper lobe. Her follow up Gallium Tomography (SPECT) was reported as normal. Maintenance chemotherapy for a total of 15 cycles given at 3-weeks intervals was followed. It consisted of 5 cycles of doxorubicin, vincristine, 6-Mercaptourine and prednisone, followed by 10 cycles with methotrexate substitution as a single intravenous dose. In addition, she also received intrathecal methotrexate on day 1 of cycles 1, 3, and 5 of maintenance schedule. The patient completed the chemotherapy treatment course of 12 months on December 2001, and has been in complete remission for almost four years.

Discussion

Childhood Non-Hodgkin’s lymphoma (NHL) is classified in four major pathological subtypes based on the histology. The distribution of these subtypes includes 40% Burkitt lymphoma, 20% diffuse large cell lymphoma, 30% lymphoblastic lymphoma, and 10% anaplastic large cell lymphomas (1). The cellular origin is usually of B or T phenotype. In ALCL, however the cell of origin is different (2). They represent a distinct category of large cell lymphomas defined by a strong expression of high levels of Ki-1 that subsequently was designated as CD30 antigen (3). Three subtypes of ALCL have been recognized. These include primary systemic ALCL with positive ALK, primary systemic ALCL with negative ALK, and primary cutaneous ALCL (3). The establishment of definitive characteristics of such subtypes in the pediatric population has been complex due to the small number of cases, and the absence of a shared staging system (4,5). In comparison to other childhood non Hodgkin’s lymphomas, the most common areas of involvement are lymph nodes (peripheral, intrathoracic, and intra-abdominal), usually associated with mediastinal involvement and hepatosplenomegaly. Other sites include skin, bone, muscle, and lung parenchyma. Childhood ALCL infrequently comprise the bone marrow or central nervous system (6). Endobronchial NHL involvement is extremely rare but has been described in adolescents with disseminated NHL (7). To our knowledge, primary endobronchial ALCL without disseminated disease or clear site of origin, as seen in this pediatric case, has never been reported. There are only very few

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patient</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactate Dehydrogenase</td>
<td>443</td>
<td>110-215 U/L</td>
</tr>
<tr>
<td>Immunoglobulin M</td>
<td>787</td>
<td>63-287 mg/</td>
</tr>
<tr>
<td>Immunoglobulin G</td>
<td>689</td>
<td>723-1685 mg/</td>
</tr>
<tr>
<td>Sedimentation Rate</td>
<td>86</td>
<td>0-20 mm/</td>
</tr>
<tr>
<td>hrCytomegalovirus IgG</td>
<td>106.9</td>
<td>0-10 IU/ml</td>
</tr>
</tbody>
</table>
cases reported in adults (8,9) and one in a late adolescent
girl (10) where endobronchial ALCL is the primary site
involved. The French Society of Pediatric Oncology
performed a multivariate analysis in patients with ALCL
and found that mediastinal and/or visceral involvement,
and a LDH level above 800U/L are associated with an
increased risk of treatment failure. On the other hand,
their absence is associated with a higher rate of complete
remissions (11). The Berlin-Frankfurt-Munster (BFM)
group studies ALCL individually and it is treated based
on the patient’s risk category. Patients with low risk factors
are treated with short (2-5 month) intensive chemotherapy
whereas the high risk patients are treated with more
prolonged chemotherapy (12). Others consider ALCL as
part of NHL and use a staging system according to the
initial disease extension. They treat patients with the same
chemotherapy protocols as NHL disregarding histology
subtype or immunophenotype (13,14). Childhood ALCL
responds well to chemotherapy and complete remission
after the induction regimen is easily achieved, however,
recurrence rates are high, ranging from 39 to 81% [11].
These relapses appear within months after completion
of treatment. The optimal therapy remains to be determined.
In our case the disease was localized, without evidence of
extension and with a lactate dehydrogenase level <800
IU/L. The duration of the treatment was 12 months and
it was well tolerated. In conclusion, pulse cycles of
chemotherapy over a 12 month period, without local
therapy modalities, were effective in the treatment of this
child with Ki-1 ALCL. Although endobronchial NHL is
very rare, it should be considered in a patient with
persistent cough, atelectasis and recurrent pneumonia and,
a bronchoscopy examination is recommended if there
is no clinical improvement with adequate treatment.

Resumen

Los autores describen un paciente pediátrico quien
presentó con clínica de 3 meses de evolución de tos seca,
dolor de pecho, dificultad respiratoria progresiva, fiebre
y neumonía recurrente con atelectasis. La broncoscopia
de fibra óptica reveló una lesión blanquecina en el bronquio
izquierdo. La biopsia de la lesión demostró un Linfoma
Anaplásico de Células Grandes y la evaluación para
enfermedad diseminada fue reportada negativa. Después
de completar quimioterapia la lesión desapareció y la
paciente ha permanecido en remisión completa por cerca
de 4 años. Aunque el compromiso extranodal del Linfoma
Anaplásico de Células Grandes es frecuente en algún
durante su curso, el envolvimiento endobronquial es extremadamente raro aún en presencia de enfermedad avanzada. A nuestro entender, este es el
prime caso aislado de Linfoma Anaplásico de Células
Grandes endobronquial descrito en un paciente pediátrico.

Referencias

1. Cairo MS, Raetz E, Lim MS, Davenport V, Perkins SL.
Childhood and adolescent non-Hodgkin lymphoma: new
insights in biology and critical challenges for the future.
Pediatr Blood Cancer 2005; 45: 753-69
2. Stein H, Mason DY, Gerdes J, O’Connor N, Wainscoat J, Pallese
of the Hodgkin’s disease associated antigen Ki-1 in reactive
and neoplastic lymphoid tissue: evidence that Reed-Sternberg
cells and histiocytic malignancies are derived from activated
3. Stein H, Foss HD, Dürkop H, Marafioti T, Delsol G, Pulford K,
Fileri S, and Falini B. CD30+ anaplastic large cell lymphoma: a
review of its histopathology, genetic, and clinical features.
Blood 2000; 96: 3681-95
Percioli R, Paolucci G. Anaplastic large cell lymphoma (Ki-1+/+
5. Massimo M, Gasparini M, Giradini R. Ki-1 (CD30) anaplastic
6. Maugath IT. Malignant Non-Hodgkin’s lymphomas in
children. In: Pizzolo, P. Poplack, D. editors. Principles and
Practice of Pediatric Oncology. Philadelphia, PA: Lippincott;
Williams & Wilkins: 2001: 661-705
7. Marquez Vega C, Quiroga Cantero E, Alfaro Gutierrez J, Pineda
Cuevas G, Alvarez Silvan AM. Endobronchial non-Hodgkin
lymphoma in an adolescent. Pediatr Blood Cancer 2004; 43:
177-8
8. Kim DH, Ko YH, Lee MH, Ree HJ. Anaplastic large cell
lymphoma presenting as an endobronchial polypoid mass.
Respiration, 1998; 65: 156-8
9. Barthwal MS, Deokar RB, Falleiro JJ, Singh P: Endobronchial
2005; 47:117-20
10. Dhall D, McClure S. Pathologic quiz case: A 17-year-old
adolescent girl with a short history of dyspnea. Arch Pathol
Lab Med 2003; 127 (12): e430
Z, Terrier-Lacome MJ, Robert A, Pondarre C, Leverger G,
Devalez C, Rodary C, Desol G, and Hartmann O. C30+
anaplastic large-cell lymphoma in children: analysis of 82
patients enrolled in two consecutive studies of the French
Gadner H et al. Successful treatment for Ki-1 anaplastic large
cell lymphoma of childhood: a prospective study of 62 patients
enrolled in three consecutive Berlin-Frankfurt-Munster group
H, Ayers GD, Lin JS, Hutchinson RE, Berard CW, Greenwald
CA, et al. Large cell non-Hodgkin lymphoma of childhood:
clinical characteristics and outcome. Leukemia 1994, 8:30-4
Chicote RR, Coccia PF, Exeby PR, Siegel S, Meadows AT, et
al. Long-term follow-up of patients treated with COMD or
LSA2L2 therapy for childhood non-Hodgkin’s lymphoma: a
Oncol 1993; 11:1024-32