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Neuroprotection of Spinal Neurons Against Blunt Trauma and Ischemia
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Each year in the Unites States there are over 10,000
new cases of para- and quadriplegia, and more than
100,000 cases of limited, but permanent, neurological
losses. Many of these losses result from blunt trauma
and ischemia to the spinal cord which leads to neuron
death. Although blunt trauma directly kills neurons due
to the physical trauma, over the subsequent48 hours an
even larger population of neurons dies due to secondary
causes. One of leading triggers of this neuron death is
ischemia due to the disruption of the blood circulation.
Selective, but unavoidable, spinal cord ischemia occurs
during thoracoabdominal surgery to repair aortic
aneurysms. This ischemia leads to neuron death,
functional neurological loss, and paraplegia in up to 33%
of the cases. Thus, both blunt trauma and induced ischemia

neurological Josses resulting from ischemia
mechanisms must be found to make spinal neurons more
tolerant to ischemic insult and other secondary causes of
neuron death. In this review we discuss mechanisms being
developed, predominantly using animal models, to provide
neuroprotection to prevent neurological losses following
blunt trauma and during induced spinal cord ischemia.
In parallel, our own experiments are looking at
neuroprotective techniques using adult human neurons.
We believe the optimal neuroprotective approach will
involve the perfusion of the ischemic region of the spinal
cord with a hypothermia solution containing a
combination of pharmacological agents.
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cord injury

have similar triggers of neuron death. To reduce the

lunt trauma to the spinal cord leads to a cascade
Bof secondary events that cause neuron death. In

the usual blunt-trauma modecl of spinal cord injury,
damage secondary to the mechanical injury can not be
easily scparated from damage secondary to the delayed
ischemic injury and reperfusion injury. Therefore, many
experimental models have focused on developing
neuroprotective mechanisms that are effective during
induced spinal cord ischemia in animal models rather than
following blunt trauma. Blunt trauma (mcchanical injury)
to the spinal cord usually does not result in complete
anatomical transection, Further, spinal cord function
frequently decreases with time after the injury. Thus,
immediately following a spinal cord trauma an individual
might exhibit of some ncurological loss but still retain
sensory input and motor function. However, subscquently
a complete loss of neurological function is seen. Such
observations have lead to the concept that secondary
neuron injury, including ischemia, arc responsible for this
phenomenon (24, 138,31, 121, 153).
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Ischemia is related to a major systemic reduction of blood
flow (3,33,153,139,46,50,110) and a loss of microcirculatory
flow in both gray and white matter of the spinal cord (4, 8,
19,15,46,77,97,107, 110, 116). Following delayed ischemic
reperfusion there is frequently even more nerve injury
and enhanced functional neurological loss.

Paraplegia due to thoracoabdominal aneurysm repair
remains an unpredictable and unpreventable complication
due to the required surgical interventions. The paraplegia
is because thoracoabdomial aneurysm repair frequently
leads to ischemia of the spinal cord resulting brief to
prolonged aortic occlusion leading to devastating
neurological injury to the spinal cord and irreversible injury
(29, 68, 137). These surgeries are associated with
postoperative paraplegia rates from 1.5-33% of the cases
(43% in high-risk patients) (80, 135, 18, 26, 27, 39, 15, 120,
103). The extent of the neurological loss depends on the
amount of the disease, the type of aortic discase, and the
duration of the aortic occlusion. To minimize the immediate
and long-term ischemia-induced necurological losses it is
cssential to minimize the number of neurons killed during
ischemia and reperfusion. Clinical attempts to reduce
neuron death have focused on preservation of blood flow,
decreasing the energy requirements of spinal ncurons using
protective agents such as hypothermia, barbiturates, and
antioxidants. In animal models alkalinization, calcium
channel blockers and NMDA receptor antagonists have
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also been used. However, no reliable technique has been
developed for clinical application that reduces ncuron
death due to trauma and the secondary causes of neuron
death.

Little is known about how the various causcs of
ischemia-induced death of adult human neurons may be
prevented and how to minimize neuron death. This review
is aimed at studying various methods that might be applied
clinically to enhance neuroprotection of adult human
neurons against ischemia-induced death.

Mechanisms of neurotoxicity

Systemic hypothermia. Has been shown to be
neuroprotective but it carries the risk of inducing cardiac
disorders. Therefore, systemic hypothermia is precluded
from routine clinical application. Further, ventricular
fibrillation and cardiac standstill may occur when body
temperature is reduced to about 32°C. Due to the
complication of systemic hypothermia many tests have
been carried out to determine whether regional
hypothermia of the spinal cord is effective in providing
ncuroprotection. The central nervous system (CNS) tissue
tolerates a reduction in temperature to 5°C without
permancnt ncurological complications (96). However, the
optimal temperature for neuroprotection of adult human
spinal cord ncurons has not been determined.
Hypothermia during ischemia reduces the decline in the
concentration of ATP and glucose when compared to
neurons undergoing normothermic ischemia (1).
Hypothermia does not influence lactate concentrations
(1). Within 24 hours of reperfusion high-energy
phosphates increase to above control levels and both
glucose and lactate levels are normalized in animals
receiving hypothermia (1). These observations support
the hypothesis that hypothermia slows the consumption
of cnergy substratc but does not prevent anacrobic
metabolism.

Strategies for providing ncuroprotection due to induced
ischemia include providing distal aortic perfusion during
crossclamping (27,108,109,4,118), CSF drainage to maintain

aspinal cord perfusion gradient (30,73), reimplantation of -

critical intercostal arteries (136), and pharmacologic
neuroprotection (105,112). However, none of these
approaches provides sufficient and reliable protection from
neurological loss, especially following prolonged periods
of ischemia.

Triggers of Neuron Death

Ischemia. The fundamental cause of spinal cord damage
duc to blunt trauma and induced ischemia is a reduced
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blood flow to the spinal cord segment subject to the
occlusion. However, there arc also interdependent cvents,
including proximal hypertension, increased cerebrospinal
fluid (CSF) pressure, distal hypotension, interruption to
blood flow to critical intercostal or lumbar arteries, duration
of aortic clamping, extent to aortic discase, and the
presence of aortic dissection, that contribute to hypoxia
and irreversible neurologic damage (108, 109).

Ischemic neuron injury also results from the loss of the
substrate necessary for aerobic metabolism, leading to
the accumulation of lactic acid and ultimately the loss of
intracellular encrgy stores necessary for cellular viability.
This neurological challenge is enhanced by the reperfusion
of ischemic tissue which frequently induces a second wave
of injury due to the liberation of free radicals and other
toxic compounds. Important mediators of ischemia-
reperfusion injury in the CNS are the amino acids glutamatce
and aspartate released from interneurons (34, 114). These
excitatory neurotransmitters are relcased in toxic amounts
by ischemic cells and during reperfusion and promote
additional immediate as well as delayed neuron death (126).

Free radicals. Much of the ischemic and reperfusion
injury to CNS neurons is secondary to the production of
free radicals that alter lipid membranes, inducing lipid
peroxidation leading to further destruction of cells and
ultimately cell death (4, 5, 10, 13, 14,21, 38, 54, 155). Results
indicate that both regional ischemia and acute spinal cord
injury are mediated via the production of free radicals that
attack the cell membrane lipids in the traumatized region.
Normal spinal blood flow is approx. 15ml/100 gm/min with
a lower limit of about 10ml/100gm/min. Severe blunt trauma
causcs spinal blood flow to decreasc to levels that induce
irreversible damage. This decrease in spinal cord blood
flow can be reversed by the administration of Tiriazad
(56).

Blunt trauma results in hemorrhage at the traumatized
site and also in a significant influx of calcium into the
traumatized cells. The calcium influx activates other
mcchanisms, including the activation of various
phospholipases and thc subscquent release of
arachadonic acid as well as increased prostoglandin
synthetase activity (11,36,49, 67, 132,35, 154). The initial
cascadc of damage also induces the production of free
radicals leading to lipid peroxidation products that activate
phosphotolipases, resulting in the further rclease of
arachadonic acid. The arachadonic acid is then metabolized
via prostoglandin synthetase-catalyzed reaction,
producing various arachadonic metabolites. Many of these
metabolites, including thromboxane E, and prostaglandin
F,, are potent mediators of ischemia. [ron released from
hemoglobin present in damaged red blood cells at the site
of trauma is a very potent catalyst for free radical
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production and lipid peroxidation (12,13). The arachadonic
acid metabolites promote further ischemia in the gray matter,
and this gray matter ischemia produces fairly significant
lactic acidosis intracellularly and free radical generation,
which then produces further lipid peroxidation. The
oxygen-containing free radicals and lipid peroxidation
products appear to be central modulators of the ischemic
damage to the traumatized tissues. Unfortunately, the lipid
peroxidation products and free radicals promote further
release of arachadonic acid and further production of the
ischemia-promoting arachadonic acid metabolites. These
metabolites also promote the spread of ischemia from gray
matter into the white matter, producing demyelination and
axonal damage that results in permanent neurological
deficits.

Acidification. Numerous in vivo experiments (71;71,
74,84,101,122,142) have shown that intracellular brain
acidosis, resulting from the accumulation of lactic acid
during global and focal cerebral ischemia, is a significant
factor in perpetuating the cycle of cellular dysfunction
leading to neuronal injury. Ischemia, both in vitro and in
vivo, induce transient acidosis (pH 7.3 to 6.5), and induces
both necrotic and apoptotic neuron loss (32). The extent
of necrosis depends on the extent and duration of the
acidosis. Acidosis may trigger ischemic neuron death by
nonselective denaturation of nucleic acids and proteins
(95), stimulation of the Na'/H" and CIYHCO, exchanger to
trigger cellular swelling (122,129,130), formation of lipid
peroxidation as a result of iron-catalyzed free radical
generation (106), inhibition of mitrochondrial metabolism,
impediment of postischemic recovery (61), and alterations
in calcium homeostasis (72). Acidification of adult DRG
neurons (from 7.4 to 6.0 or 5.8) increascs glutamate-induced
currents which can lead to neuron death (150,144,149).

Ischemia-induced release of excessive excitatory amino
acids (EAAs). Mammalian spinal and DRG neurons
possess glutamate receptors (117) and DRG both contain
and release glutamate (48,133,115). Spinal cord ischemia
and other forms of CNS insult result in a massive
accumulation of EAASs (such as glutamate and aspartate)
causing excessive stimulation of the NMDA subtype of
glutamate receptors (134) leading to DRG and spinal
neuron death (123,44,42,85,100,134,57,76,51,78,83,85.92). In
vivo micro dialysis of the swine spinal cord showed that
60 minutes of ischemia induces the massive release of
EAA neurotransmitters that accumulate to toxic
concentrations (100 mM, a 3-fold increase) (111). Injection
of this concentration of glutamate or aspartate into the
spinal cord results in neuron death for several hundred
micrometers around the injection site (82).

NMDA activation and disruption of calcium
homeostasis. Ischemia induces DRG and spinal neuron
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death by triggering a disruption of their Na*/Ca*
exchanger, leading to a massive calcium influx and loss of
neuron calcium homeostasis (2,69.115). NMDA-receptor-
mediated toxicity is due to the influx of extracellular Ca®
(143,104). The released glutamate stimulates its own relcase
in a positive feedback loop by its interaction with non-
NMDA receptor subtypes (134). Calcium-induced Ca*
release and the further influx of Ca®' through voltage-
gated Ca*™ channels after glutamate-induced
depolarization also contribute to glutamate toxicity. The
massive increase in (2), that activates this self-destructive
cellular cascade involves many calcium-dependent
enzymes, such as phosphatases (e.g. calcineurin),
proteases (the calpains), and lipases. Postsynaptic
neuronal elements, as well as glial cells, contribute to the
extraccellular overflow of excitatory amino acids during
ischemia duc to the post-synaptic clements leaking or
rcleasing glutamate and aspartate, and glial cells losing
their ability to convert glutamate to glutamine effectively
(143). NMDA-receptor activation induces apoptosis or
necrosis depending on the severity of the insult (98,140).
Sclective NMDA receptor antagonists (99,124) and Ca*
channel blockers can thus prevent glutamate-induced
neurotoxicity (131) (see later section on Stabilization of
Calcium Homeostasis).

Mechanisms of Neuroprotection

Hypothermia. Hypothermia has been widely studied
for its ability to provide neuroprotection and improve
neuron tolerance to hypoxia and ischemia reperfusion
neuron injury (6,7,16,81,89,110,145,25,112,22,17,58).
Regional hypothermic perfusion of the spinal cord via
retrograde venous perfusion with hypothermic saline
solution significantly reduces neurological loss due to
ischemia (23,25,58.103). Hypothermia may provide
neuroprotection by reducing tissue metabolism (decreased
oxygen demand) by spinal cord neurons and reducing the
consumption of energy metabolites during ischemia.
However, this role of hypothermia on spinal cord neurons
is assumed to be secondary. More importantly hypothermia
may act by stabilizing the ncuron membranc, reducing the
release of excitatory ncurotransmitters, stabilizing
intracellular calcium homeostasis, blocking NMDA
receptors.

Hypothermia may also provide neuroprotection from
ischemia-induced excitotoxicity by markedly reducing the
cxcessive accumulation of extracellular EAAs
(predominantly glutamate). The degree of hypothermia
used to provide neuroprotection against ischemia on the
same and different animals and in i vifro models varics
extensively: from slight (33-35°C) (cats) (94); 33°C (rabbits/
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rats) (66,14 1); 34°C (rat) (88,90) to extreme (2-5°C): 2°C
(dogs) (152); 4°C (together with adenosine) (swine) (102,
103,102); 5°C (rabbits) (86, 89); 5°C (rabbits) (91).

Preconditioning with hypothermia. Perfusion witha
hypothermic (27°C) solution for 5 minutes starting 10
minutes after CNS ischemia provides no neuroprotection.
However, perfusion started immediately after ischemia (to
27°C but not 34°C for 2 h) provides neuroprotection (70).
Thus, the timing of the hypothermic perfusion is critical to
providing ncuroprotection. Hypothermic preconditioning
of adult rabbit spinal ncurons increases their tolerance to
ischemia from 26 to 41 minutes (110). Pre-hypothermia
together with thiopental, that reduces ncuronal metabolic
requirements, [urther increases ncuron tolerance to
ischemia to 57 minutes (110).

Stabilization of caleium homeostasis. Neurotoxicity
due to ischemia-induced increased (2), can be significantly
reduced by nominally Ca®' -frec medium (69), extraccllular
alkalinization, and the NMDA and non-NMDA receptor
antagonists (D-AP3 and CNQX) in combination, which
significantly reducc the increase in (2), (69). Calcium entry
into peripheral and central ncurons can also be prevented
by the calcium channel blocker TA3090 (9).

Blockade of NMDA receptors. Activation of adult DRG
neuron NMDA receptors can be blocked by competitive
antagonists (151). Clinically the NMDA rcceptor
antagonist memantine provides neuroprotection against
cercbral ischemia (20) but not spinal cord ischemia (147).
For spinal neurons gacyclidine (GK-11) (1.0 mg/kg), the
non-competitive NMDA receptor antagonist, provides the
best protection against ischemia (37,45). In animal models,
blocking NMDA rcceptors with MgSO, and MK-801 (1.0
mg/kg) provide neuroprotection against ischemia (39.40).
Neuroprotection of spinal ncurons against ischemia is also
enhanced by perfusion with hypothermic saline plus
adenosine (103,120):(102). Adenosine appears to provide
neuroprotection by suppressing the neurotoxic GABA-
activated current (IGADA) in a majority of the neurons
(77%) (64).

Adenosine. Adcnosine has been extensively used ina
variety of solutions for the preservation of the heart, liver,
kidney, and pancreas for transplantation and other surgical
procedures (128). The addition of adenosine to the
hypothermic perfusion solution further decreascs
neurological losses compared to the perfusion of
hypothermic saline alone (58,87,102,103,128,148).
Adenosine activation of both the Al- and A2-Adenosine
receptors is most likely responsible for the beneficial effects
of adenosine on ischemic neuronal tissuc. Al-receptor
activation decreascs ncuronal excitability and limits the
damaging influx of calcium through voltage-gated
channels. Adcnosine inhibits the relcase of cxcitatory
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neurotransmitters thus reducing the activation of NMDA
receptors (119.125). In addition, stimulation of A2-
receplors causes vasodilation and inhibits platelet
aggregation, neutrophil activation and subscquent free
radical production. thereby reducing reperfusion injury
after an ischemic interval (87,119,125). The vasodilation
might be beneficial because it might increase blood flow
to the spinal cord.

Alkalinization. Neurotoxicity due to trauma-induced
brain acidosis can be reduced by systemic alkalinization
(113). Although mousc neocortical ncurons in primary
culture die when exposed to azide-induced chemical anoxia
(100 mM), they survive when maintained at pH 8.2 (69).
Systemic alkalinization improves neurological outcome
after global and focal cerebral ischemia (65,79.79).
Alkalizing agents are cffective in reducing infarct volume
following focal cerebral ischemia (cat) (79).

Reduction of free-radicals. Ischemia-induced lipid
peroxidation causes the production of free radicals which
damage vital ccllular proteins leading to necuron death.
Neurotoxicity is also intricately linked to the activation of
threc distinct neuronal endonucleases which are
exquisitely pH dependent suggesting that intracellular pH
influences nitric oxide (NO)-induced toxicity. NO toxicity
can be caused by the NO generators sodium nitroprusside
(SNOP) (300 mM), 3-orpholinosydnonimine (300 mM), or
6-(2-hyrodroxy- l-methyl-2-nitrosohydrazino)-N-methyl-1-
hex anamine (300 mM). NO generated neurotoxicity
appears to be pH dependent because neurons exposed to
NO gencrators under acidic conditions (pH 7.4 o 7.0) arc
killed. whilc alkaline conditions (pH 7.6) arc neuroprotective
(146). Mitochondria also assist in providing
neuroprotection by controlling free radicals.

Tirilazad is a very potent scavenger ol free radicals,
antioxidant, and extremcly potent inhibitor of lipid
peroxidation (3,10.11.14,38,53-55). It is very cffective in
the reactions catalyzed by iron. Tirilazad also appears to
decrease the amount of arachadonic acid released at the
trauma site. This decrcase may be sccondary to its
inhibition of the positive feedback pathway mentioned
previously or may be due to a separate second mechanism.
The antioxidant effect is not related to any glucocorticoid
activity of this compound. Tirilazad does not have any
cltect on the hypothalamic-pituitary-adrenal axis and does
not appear (o act via the steroid receptor. In a cat model of
acute subarachnoid hemorrhage, Tirilazad treatment causes
a blunting of the risc in intracranial pressure suggesting
that one mechanism providing CNS protection against
spinal cord injury might be the effect of Tirilazad on CSF
pressure (47). Tirilazad has also been shown to lower CSF
pressure thereby improving perfusion pressure and thus
to improved neurological outcome following aortic
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occlusion (41).

Neuroprotection by Neurotrophic Factors. Application
of multiple neurotrophins to neurons reduces EAA
excitotoxicity-induced neuron death (52,75).

Neuroprotection by stress-related (heat shock)
proteins. Heat shock protein (HSP) expression is increased
by stress (59). Adult DRG neurons subjected to stress up-
regulate HSP synthesis in vivo as well as in isolated DRG
neurons and the HSPs improve neuron survival (28).
Prolonged, but mild hypothermia (minimum of 33°C for 24
hours) induced 1 hour after resuscitation incrcases the
levels of stress-related proteins and reduces neuron loss
(60). Heat shock proteins may act by buffering ncurons
from freec radicals. Thesc results suggest that
preconditioning spinal neurons with a hypothermic and
alkaline solution prior to ischemic insult might induce
enhanced ischemic neuroprotection.

Lowering CSF pressure. Lowering CSF pressure
decreases intraspinal pressure significantly, which in turn
reduces ischemic damage by improving the perfusion
pressure in the neural and supporting tissue (47,62,63, 138).
Similarly, CSF drainage induces an improvement in
neurological outcome and in perfusion pressure in the
injured spinal cord (41).

Neuroprotection for Adult Human Neurons

Much of the work so far discussed had involved
experiments on animal models. However, before applying
these techniques in clinical trails it is important to determine
whether they provide ncuroprotection to adult human
neurons. Work in our laboratory has asscssed various
mechanisms for providing neuroprotection to adult human
dorsal root ganglion (DRG) neurons removed from organ
donors within 1% of clamping the aorta of the donor. Once
the DRG are dissociated the neurons survive and remain
clectrically excitable for more than 2 months in vitro (127).
Although once dissociated the neurons have long viability.
the challenge is to obtain viable dissociated neurons. This
is because the neurons in the intact DRG die due to
ischemia and ischemia-related secondary causcs. Thus it
is essential to provide protect the ncurons while they are
in the intact DRG. This protection can be provided by
methods similar to those used in models, i.e. hypothermia
(4-20°C) and alkalization (pI1 8.0- 9.3) which increase ncuron
viable compared to DRG maintained under physiological
conditions (36.5°C at pH 7.4) by 41-fold and 14%
respectively (unpublished results). However, subjecting
the DRG to hypothermia and alkalinization simultancously
increascs neuron viability 104-fold.

Similar as has been found in animal models, antioxidants
also provide ncuroprotection and increase the number of
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viable dissociated adult human DRG neurons by about
20% (unpublished results). These results suggest that
when antioxidants are used simultancously with
hypothermic and alkaline conditions the degree of
neuroprotection will be even further increased. Additional
experiments are being carried out to test whether
combining various pharmacological agents together with
hypothermic and alkaline conditions and antioxidants
further increase the extent of neuroprotection.

Conclusions

Blunt trauma and ischemia lead to neuron death and
functional neurological losses due to a variety of primary
and sccondary causcs. Techniques are required that
provide ncuroprotection to spinal cord ncurons following
blunt trauma and during induced ischemia and reperfusion.
Techniques developed using a number of animal models
show promise for reducing neurological losscs normally
induced by spinal cord ischemia.

Localized hypothermia of the spinal cord scgment
subject to ischemia provides ncuroprotection. However,
the temperatures used to provide ncuroprotection in these
models varies extensively and no optimal temperature had
been found, for either a specific animal model or between
modcls. This suggests that there may be major differences
in the requirements of neurons from different animal
models, or the differences result from the techniques
applied. Regardless of the differences, it is vital to
determine the tempcerature that provides optimal
neuroprotection to adult human neurons. The
neuroprotection provided by hypothermia can be
enhanced if is used in combination with various
pharmacological agents. such as adenosine, free radical
scavengers, and NMDA receptor blockers. Further
experiments are required to determine whether combining
these and other pharmacological agents, as well as
applying them together with hypothermia and
alkalinization further enhancc the degree of
neuroprotection. Finally, before clinical trials can be carried
out it will be crucial to test each of these approaches on
adult human neurons to determine whether they provide
effective neuroprotection. when used in clinical trials. We
believe our the use of isolated adult human DRG provide
an excellent model on which these techniques can be tested
for their relevancy to the adult human nervous system.

Resumen

Cada ano c¢n los Estados Unidos ocurren mas 10,000
nuevos casos de paraplegia y cuadraplegia, y mas de
100,000 casos de pérdida neuroldgica, limitida pero
permanente. Muchas dc estas pérdidas se deben a un
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trauma cerrrado ¢ isquemia en la médula espinal lo que
puede conducir a la muerte de neuronas. Aunque el trauma
cerrado mata las neuronas directamente debido trauma
fisico, en las siguientes 48 horas muere una mayor
poblacion de neuronas por causas secundarias. Uno de
los activadores principales en la muerte neuronal cs la
isquemia debido a la interrupcion del flujo sanguineo.
Selectiva, pero evitable, la isquemia de la médula espinal
ocurre durante los procedimientos quirtrgicos de la aorta
toracica abdominal para reparar los ancurismas. Esta
isquemia conduce a muerte neuronal, pérdida de la funcion
neurologica y paraplegia en un 33% de los casos. Tanto el
trauma cerrado como la isquemia inducida, tienen
activadores similares en la muerte neuronal. Para reducir
la pérdida neurolégica como resultado de la isquemia deben
buscarse mecanismos para lograr que las neuronas de la
médula espinal sean mas tolerantes al insulto vascular y
otras causas secundarias de muerte neuronal. En esta
revision, discutimos los mecanismos que cstan en
desarrollo, usando mayormente modclos animales, para
proveer ncuroproteccion en la prevencion de pérdida
neurolégica luego de un trauma cerrado y durante la
isquemia inducida en la médula espinal. Paralelamente,
nuestros propios experimentos cxaminan las téenicas de
neuroproteccion utilizando neuronas de humanos adultos.
Crecmos que el acercamiento mas optimo para la
neuroproteccion incluird la perfusion de la region isquémica
de la médula espinal con una solucidon hipotérmica
compuesta por una combinacion de agentes
farmacoldgicos.
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