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Can Regeneration be Promoted Within the Spinal Cord?

DAMIEN KUFFLER, Ph D

Although regeneration in the peripheral nervous
system (PNS) after injury is robust, regeneration in
the central nervous system (CNS) is abortive. The
results from differences in the balance of regeneration
inhibiting and promoting factors, which in the CNS is
skewed toward inhibition while in the PNS it is skewed
towards promotion of nerve growth. In addition to
lacking regeneration promoting factor the CNS has
the ubiquitous distribution of factors that inhibit
regeneration. PNS Schwann cells release a number of
characterized and uncharacterized neurotrophic
factors that exert powerful regeneration promoting
influences on axons in the PNS. Thus it has been
hypothesize that implantation of Schwann cells, or
infusion of factors they release into the lesioned spinal
cord should lead to CNS regeneration. However,

promoting CNS regeneration Although still limited,
improved regeneration takes place when there is the
simultaneously inhibition of CNS regeneration
blocking factors and the presence of Schwann cell-
released factors. To further improve the extent of CNS
regeneration we must determine the best combination
of neurotrophic factors to infuse into the site of a CNS
lesion, as well as be able to characterize and block all
CNS regeneration inhibiting factors. This review
examines what is known about promoting and
inhibiting regeneration in both the PNS and CNS, and
the approaches that may allow us to change the cellular
environment of the CNS to one that is permissive to
and promotes regeneration.
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Schwann cell implants alone are not very successful in
uring development and regeneration of the
nervous system, axons must be promoted to

D regenerate and navigate to their specific targets
through a complex molecular environment. Gradients of
target-derived factors can both attract and repel
regenerating axons (1-11). GTPases of the Ras family are
involved in transducing extracellular signals into
responses that lead to directed neurite outgrowth mediated
by trkA receptors (12,13). Sprouting of axon collateral
branches is important in the establishment and refinement

of neuronal connections during both development and
regeneration, and neurotrophins provide local cues to
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stimulate the formation of collateral axon branches (14).
Although the mammalian CNS becomes inhibitory to
regeneration following birth and the completion of the
formation of synaptic connections, the PNS remains
permissive and promotes regeneration (14,15, 16, 17, 18).
Embryonic neurons are much less responsive to CNS
inhibitory factors than are adult neurons (20, 21). Until
recently most experiments studying neurite outgrowth
promoting and inhibiting factors have been carried out
on embryonic neurons since they are easier to isolate and
maintain in vitro. However, to demonstrate the effects of
eliminating inhibitory factors such as chondroitin sulfate
proteoglycans (CSPG), myelin associated glycoprotein
(MAG), and other inhibitory factors, or disinhibiting the
action of laminin in spinal cord tissues, while
simultaneously promoting neurite outgrowth, it is essential
to carry out experiments on adult neurons. A number of
laboratories have now developed techniques to isolate and
maintain adult rat (22, 23, 24) and human (25, 26) dorsal
root ganglion neurons in vitro which are excellent models
on which to develop techniques for promoting neurite
outgrowth and inhibiting CNS outgrowth inhibiting
factors, and that have important clinical relevance.
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Promoting PNS regeneration. Differential screening
of cDNA libraries of crushed and non-injured rat sciatic
nerve have allowed genes to be cloned and identified with
specific and unknown functions during degeneration and
regeneration of the nervous system. More than 60 genes
and their products show a specific temporal pattern of up
and down regulation following peripheral nerve lesion
(27, 28, 29), including genes encoding for; transcription
factors, growth factors and their receptors, cytokines,
neuropeptides, myelin proteins, lipid carriers, and
cytoskeletal proteins, as well as ECM, and cell adhesion
molecules. Although initially postulated that
neurotrophins act alone on various populations of neurons,
it is now clear that factors up- and down-regulated at
different times after nerve section serve different
functions, and that more than one neurotrophin, some of
which remain unidentified, act separately and
simultaneously, at any time on specific neuronal
population (30, 31).

Within 3-12 hours of nerve lesion, interleukin-1 (IL-1)
bioactivity, as well as mRNA levels of the growth factor
and cytokine genes encoding nerve growth factor (NGF)
(32, 33, 34, 35), IL-6, and granulocyte-macrophage
colony stimulating factor (MG-CSF), growth-associated-
protein (GAP) 43/B50, and peripherin (36, 37) are
up-regulated dramatically in the distal portion of the nerve.
BDNF mRNA expression begins to rise slowly 7 days
post nerve lesion (38, 39). In contrast, the mRNA level of
neurotrophin NT-3 rapidly declines following nerve lesion
(40, 41, 34, 35, 42, 43). While NGF has a potent
neurotrophic influence on embryonic and adult sensory
and sympathetic neurons, other factors, such as BDNF
(22) and CNTF (44) also exert an influence on adult
sensory neurons. The neurite outgrowth promoting
influence of NT-3 is additive to that of BDNF, although
the influence of NT-3 is substantially less than that of
BDNF (45). Further, novel PNS neurotrophic factors
continue to be found, such as galectin-1 (46) and vascular
endothelial growth factor (VEGF) which has neurotrophic
actions on cultured adult mouse superior cervical ganglia
(SCG) and dorsal root ganglia (DRG) (47).

Neuropoetic factors such as leukemia inhibitory factor
(LIF), IL-6 and ciliary neurotrophic factor (CNTF) share
signaling pathways, including the IL-6 signal transduction
receptor component gp130 (48, 49). LIF is a neurotrophic
factor for sensory and motoneurons (49, 50) and within 2
hours of nerve section, its mRNA level increases in
Schwann cells adjacent to the lesion site and remains high
for about 1 week (51). In contrast, the quantity of mRNA
for CNTF, present in large quantities in Schwann cells of
non-injured nerves (43), decreases to very low levels in
the distal portion of the nerve 4 days after nerve section,
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remains almost unchanged for approximately 3 weeks,
and then begins to rise again (52). Other factors are
regulated within various time frames, such as transforming
growth factor (TGF)-al (maximum expression 4 days
post section), TGF-a3 mRNA (expression decreases
markedly immediately upon section (53), and insulin-like
factors (expression increases significantly within 3 days
of section, peaks between day 4 to day 6, and declines
during the following 2 weeks) (54,55).

Inhibiting PNS regeneration. Although long accepted
that the PNS lacks regeneration inhibiting factors and only
possesses regeneration promoting factors, the distal nerve
is inhibitory to regeneration for about 1 week, until
Wallerian degeneration is complete, and only then does
it promote regeneration (56). The inhibition results in part
from Schwann cells upregulating their release of neurite
outgrowth inhibitors (57) such as CSPG (58, 59, 60). To
examine the influences of cell surface, extracellular matrix
(ECM), and diffusible factors, in inhibiting and promoting
regeneration cryosections of innervated and denervated
peripheral nerves have been used as substrates for neurons.
Neurons extend neurites of equal lengths on both types
of sections, surprising since denervated Schwann cells
increase their synthesis of the neurite outgrowth promoter
laminin (60). However, this is attributed to the influence
of the laminin being inhibited by its association with
Schwann cell-derived CSPG (57, 60, 61), since application
of exogenous laminin to cultures of neurons on peripheral
nerve sections overrides the inhibitory influence of
peripheral nerve MAG (62). Although another series of
experiments showed that neurite outgrowth on denervated
peripheral nerve was twice as great as on non denervated
nerve, this growth resulted from the neurites avoiding
MAG and CSPG expressing membranes and extending
on endoneurial cells of the denervated sections (63). Even
though CSPG synthesis remains high during the
regeneration process it would appear that axons eventually
regenerate once the Schwann cells synthesize and release
neurotrophic factors in sufficient amounts to overwhelm
the inhibitory influences of the CSPG. PNS regeneration
rates can be increased by digesting CSPG (57, 56), or
blocking its synthesis with 8-D-Xylosides (56). It has been
shown that in spite of the regeneration inhibitory influence
of peripheral nerve during the first week post nerve
section, its cells actually secrete a sufficient concentration
of neurotrophic factors within 1-2 days of sectioning to
induce extensive neurite outgrowth in vitro (24, 62, 65).

Inhibiting CNS regeneration. Although axons within
the CNS do not regenerate, the portion of these same axons
within the PNS regenerate well, as do CNS axons provided
a PNS environment (66, 67, 68, 69, 70). Thus, the ability
of axons to regenerate depends on their local cellular
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environment (70,72,73). CNS regeneration is inhibited
by the nearly ubiquitous presence of regeneration
inhibiting factors associated with astrocytes,
oligodendrocytes, and oligodendrocyte/type 2 astrocyte
progenitors (O2A cells) (15, 16, 74, 75).
Oligodendrocytes and their myelin induce contact
mediated inhibition of neurite growth from sympathetic
and sensory neurons (18, 20). This inhibition is due to 2
minor membrane proteins (MW 35 and 250 kDa) (bNI-22
and NI-35/250) (15, 16), as well as MAG, tenascin-R,
and NG-2. The active protein has a mass of 220 kDa and
an isoelectric point between 5.9 and 6.2, its inhibitory
activity is sensitive to protease treatment, resists harsh
treatments like 9 M urea or short (18). Neutralizing these
factors in vitro with monoclonal antibodies IN-1 and IN-2
allows neurites to overgrow oligodendrocytes and
elongate on a substrate of CNS myelin (16, 20, 18, 76,
77, 78), while in vivo rats with complete bilateral lesions
of the cortico-spinal tract treated with IN-1 have massive
sprouting through the lesion site (74). Although MAG is
another myelin inhibitory component (79, 80, 81, 82, 84,
21), its physiological importance is controversial, since
one study reported an enhancement of the rate of axon
regeneration in MAG -/- mice (84, 85), while another
showed no improvements (86). More recently DRG
neurons transplanted into degenerating CNS white matter
undergoing Wallerian degeneration extended axons
despite contact with the myelin, indicating that
degenerating white matter beyond a glial scar has a much
greater ability to support axon regeneration than
previously thought (87). In addition to blocking neurite
growth the myelin-associated protein Nogo-A, an antigen
for the monoclonal antibody IN- I (88) raised against CNS
NI-35/250 (98) appears to play a role in regulating axon
plasticity to maintain the proper targeting of terminal
arbors within specific gray matter regions (90).
Although it is generally considered that astrocytes
inhibit CNS regeneration there is increasing evidence to
indicate that they possess both axon-growth promoting
and axon-growth inhibitory properties (91). Astrocytes
express known neurite-outgrowth promoting molecules
such as laminin, fibronectin and N-cadherin as well as
the growth inhibitory molecules tenascin and chondroitin
sulphate proteoglycan, plasminogen activator,
plasminogen activator inhibitor activity, and growth cone
collapsing activity. These findings suggest that the
functional differences between the permissive and the
inhibitory astrocyte cell lines resides largely within their
ECM. The dorsal root entry zone (DREZ) forms the
junction between the dorsal roots of the PNS and the spinal
cord (CNS). In rats older than 1 week, reactive astrocytes
of the DREZ stop lesioned primary sensory axons from
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elongating (92, 93, 94, 95, 96, 97, 98, 99, 100, 101) due
to an impenetrable membrane bound molecular barrier
of CSPG, composed of cytotactin/tenascin (CT) and
chondroitin 6-sulfate-containing proteoglycans
(C-65-PG) (96), which also inhibit Schwann cell invasion
of the CNS (96). CNS injury also induces reactive
astrocytes to form regeneration inhibitory astrocytic scars
(96, 97, 87), where neurites that fail to regenerate are
enclosed by CSPG (95, 97). Reactive astrocytes in vitro
express high levels of CSPG and are inhibitory to neurite
growth, but become permissive when treated with
glycosaminoglycan (GAG)-degrading enzymes (94),
suggesting that CSPG is a primary regeneration inhibitory
molecule (95, 97). In adult rats a lesion of the entorhinal
cortex causes reactive astrocytes to express neuronal
CSPG neurocan. However, they to not prevent
regeneration but serve as boundaries that determine the
path along which the axon regenerate (100, 102). Neurons
grafted atraumatically into adult rat white matter tracts
regenerate their axons, while grafts associated with trauma
do not (97, 87). Thus astrocytes can inhibit axon growth
(103, 104) once trauma makes them reactive (97).
Reactive astrocytes are phenotypically diverse and vary
in their ability to support neurite outgrowth (105, 106,
91, 107). The Neu7 astrocyte cell line is the most
inhibitory, apparently due to its expression of CSPGs (91)
among which are NG2, versican, and the proteoglycan(s)
recognized by the CS-56 antibody, which are at higher
levels than the other cell lines (108). Versican, which in
vitro appears on astrocytes in patches, is not avoided by
extending neurites (108). In some astrocytes and O2A
cells NG2 synthesis is rapidly upregulated after injury
and forms a dense NG2-rich network (108). The inhibitory
influence of membrane bound and diffusible NG2 is
eliminated by digesting the core protein, or removing the
CS chains (109, 108). Disrupting proteoglycan sulfation
with sodium chlorate increases axon growth through
three-dimensional cultures of primary astrocytes (109).
The inhibitory influence of astrocytes can also be
eliminated by inhibiting the synthesis or proteoglycan with
B-D-Xylosides (109). This also reduces the ability of
astrocytes to form boundaries that repel axons (107). Thus,
although several CSPGs are differentially expressed by
astrocytes, NG2 and its side chains appear to be the most
important obstacle to axon regeneration (110, 111, 112).

Specific similarities and differences between
oligodendrocytes and astrocytes. Oligodendrocytes and
astrocytes both inhibit CNS regeneration via
proteoglycans, particularly those with CS side chains (113,
114, 110), cell surface factors, and constituents of the
ECM (111, 112, 114, 115, 116, 117, 118). However the
specific inhibitory factors differ, with astrocyte versican
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not being inhibitory (59, 108), while oligodendrocyte
versican is a potent inhibitor (119), likely due to the two
populations expressing different isoforms of versican (V1
for astrocytes and the V2 splice variant for
oligodendrocytes). Bovine oligodendrocyte myelin also
contains a neurite growth-inhibitory activity associated
with CSPG that is ascribed to another CSPG, brevican
(119). Oligodendrocytes and astrocytes also differ in that
for oligodendrocytes the CSPG core protein is a potent
inhibitor (120, 110), although its associated CS side chains
are not, since their elimination does not reduce inhibition
(119). However, digestion of astrocyte CS side chains
eliminates inhibition (107). Thus any attempt to change
the environment of the CNS from regeneration inhibitory
to permissive/promoting requires blocking or inactivating
a number of different factors on a variety of cell types.
Pro-inflammatory factors improve CNS recovery
following trauma. Trauma-induced lesions in the brain
and spinal cord induce a complex cascade of cellular
reactions at the local lesion site including leukocyte
infiltration, blood-brain barrier (BBB) breakdown,
secondary tissue death, inflammatory reactions, as well
as scar and cavity formation (121, 122). These phenomena
are more pronounced in the spinal cord than in the
praenchyma of the brain (121, 122). Transcription of
pro-inflammatory cytokines TNF alpha and IL-1, as well
as MIP-1 alpha and MIP-1 beta is upregulated within the
first hour following injury (123). Resident CNS cells,
probably microglial cells and not peripheral inflammatory
cells, are the primary source of cytokines and chemokine
mRNA (123). Animals receiving a cytokine mixture of
interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and
tumor necrosis factor alpha (TNF alpha) within 1 day of
CNS trauma showed a smaller amount of tissue loss 7
days after the trauma than animals receiving Ringer
solution (124). The inflammatory reaction of the spinal
cord has serious detrimental consequences and blocking
the formation of inflammation, or reducing it is critical
for funmctional recovery. Infusion of the
glucocorticosteroid, methylprednisolone (MP), within 8
h of a spinal cord transection in the adult rat gives rise to
improved neurological recovery as well as reducing both
spinal tissue loss and dieback of vestibulospinal fibers,
and causing a transient sprouting of vestibulospinal fibers
near the lesion at 1 and 2 weeks post-lesion (125).
However the relationships between the inflammatory
changes, spinal tissue sparing, and axonal survival and
sprouting are complex and not well understood.
Vascularization improves CNS. Following CNS
trauma increased vascularization appears to improve CNS
regeneration, but such increased vascularization is limited.
Although 4 days following spinal cord trauma there is a
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significant increase in the number of blood vessels present
at the lesion site, after 1 week the number of vessels
declines (126). Thus, although physiologically there are
significant initial attempts to repair disrupted vasculature
following trauma it is not fully completed and does not
lead to the restoration of a compact tissue and it does not
prevent the subsequent formation of caverns (126). The
expression of VEGF mRNA, which is required for
vascular formation, is restricted to fibre tracts precisely
in the areas where the changes in the vasculature are
observed later on (123). These results suggest that
experimental attempts to induce sustained vascularization
in the region of spinal cord trauma may improve the
success of CNS regeneration following trauma.

Alternative Approaches for Promoting
CNS Regeneration and Their Relative
Benefits

1. Inactivating growth inhibitory factors in the CNS

A. Infusion of antibodies that neutralize growth
inhibitory molecule bioactivity. Infusion into lesioned
adult rat spinal cords of the IN-1 antibody that neutralizes
the biological activity of the growth inhibitory Nogo
protein induces limited behavioral recovery in motor and
sensory tests (77, 74, 78, 127, 88). If and when additional
inhibitory factors are found infusion of antibodies against,
them plus the IN-1 antibody, should allow additional
regeneration to take place.

B. Degrading regeneration inhibiting factors or
down regulating their synthesis.

i. Neurons synthesize and transport metallo-
proteinase-2 (MMP-2) to their growth cones
where it is released and degrades the neurite
growth inhibiting of CSPG (56). The
membrane-bound MMP-2 activity (C6-MP)
shares several biochemical and pharmacological
characteristics with MT-1 -MMP (128), and
enables rat and human glioblastoma cells to
migrate into CNS white matter which they would
otherwise do not do (129). Thus proteolytic
inactivation of CSPG and myelin associated
growth inhibitory proteins by growth cone
secreted MMP-2 would expose ECM laminin, that
is otherwise masked by CSPG, making the
substrate neurite outgrowth promoting (113). In
a synthetic ECM NGF induces metalloproteinase-
dependent neurite growth (131). These results
suggest that induction of an increased synthesis
and release of metalloproteinase activity from
growth cones of CNS neurons would therefore
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degrade growth inhibitory factors and lead to CNS
regeneration.

ii. Exposure of isolated lengths of PNS nerve to
chondroitinase ABC (C-ABC) degrades CSPG
and, enhances neurite growth on these nerves in
vitro (56). Exposure of DRG neuron-associated
Schwann cells with their CSPG rich membranes
to C-ABC eliminates the CSPG inhibition of
neurite growth (132). Thus infusion of dorsal
roots, the DREZ, and the CNS with C-ABC
should allow the regeneration of DRG axons into
and within the CNS (132).

C. Down-regulating the synthesis of CNS growth
inhibiting factors. -D-Xylosides blocks the synthesis
of CSPG and systemic injection of B-D-Xylosides into
adult rats enhances the rate of PNS nerve regeneration
(56). Exposure of oligodendrocytes in vitro to -D-
Xylosides blocks their surface presentation of brevican
and versican V2 resulting in the elimination of growth
cone collapse following contact with these
oligodendrocytes (119). Therefore systemic injection of
f3-D-Xylosides, or its infusion into the site of a CNS lesion
should allow regeneration through the lesion.

2. Eliminating growth cone sensitivity to CNS growth
inhibitory factors.

A. Elevating a neuron’s intracellular cAMP
concentration in vitro by neurotrophins or dbAMP before
they encounter neurite growth inhibitory factors
eliminates their sensitivity to the growth inhibitors MAG
and myelin (21). Thus elevating the concentration of
neuronal cAMP in the region of a CNS lesion should allow
the injured axons to regenerate within the CNS.

B. For adult dorsal root ganglion neurons, even though
they remain in contact with the growth inhibitory CSPG
of Schwann cells, the inhibition of the CSPG can be
reduced by exposing the neurons to several neurotrophins
presented singly (NGF, BDNF, NT-3) and further reduced
when these neurotrophins are present simultaneously
(132). However, exposure to a complex combination of
neurotrophic and other factors completely abolishes the
CSPG inhibitory influence while simultaneously inducing
massive neurite growth (132). These are exciting results
since CSPQG appears to be a major growth inhibitor in the
dorsal roots, DREZ and CNS. Thus infusion of the
appropriate combination of neurotrophic factors should
completely eliminate the growth inhibition of CSPG and
both allow and induce significant regeneration into and
within the CNS.

3. Grafting regeneration supporting cells into the CNS

Schwann cells appear to release most of the
neurotrophic and substrate bound factors necessary to
permit, promote, and direct axon outgrowth in the PNS
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(133, 24, 14, 9, 65, 11). Therefore they have been
considered ideal candidates for implanting into the CNS,
or as bridges between lesioned CNS regions. These
implants induce neuron survival, promote sprouting, and
myelinate CNS processes and can lead to functional
recovery via the release of diffusible neurotrophic factors
and/or growth promoting substrates (32, 134, 135, 136,
137, 138, 139, 81, 140, 141, 142,143, 144). Other cells
such as ensheathing cells cultured from adult rat olfactory
bulb have also been successful in promoting axons to
regenerate through the implants which then continue to
regenerate into the denervated caudal spinal cord tract
(140). Such bridges are successful especially when spinal
cord lesion causes a gap that must be bridged by the
regenerating axons. Cells genetically modified to release
a variety of factors are an additional means of providing
the lesioned CNS with a local regeneration promoting
environment. Implantation of genetically modified
Schwann cells bring about improved neuron survival,
axon growth and myelination (145, 146). Transplants of
primary autologous cells genetically modified to produce
NGF prevent injury-induced degeneration of cholinergic
neurons (147) while genetically modified fibroblasts
engineered to produce NGF and BDNF accelerate
recovery from traumatic spinal cord injury in the adult
rat (148, 49, 150). However, it has also been reported
that the grafted cells alone neither support regeneration
of injured cortical spinal tract fibers or prevent die-back
of CNS neurites after injury (151). However when these
Schwann cell grafts are accompanied by the IN-1 antibody
some CNS neuron sprouting occurs, although neurite
die-back continues (151). If Schwann cell grafts are
accompanied by acidic fibroblast growth factor (aFGF)
nerve regeneration into the grafts is supported and neurite
die-back is reduced (151). Although these results are
encouraging because they indicate that Schwann cells can
synthesize and release all the factors necessary to promote
CNS regeneration they suggest that once implanted into
the CNS they are prevented from doing so. Most likely
factors released from astrocyte and other cells that are
known to change the number, type, and ratio of Schwann
cell-released factors prevent the Schwann cells from
synthesizing and releasing all the factors required to
promote CNS regeneration (152). Therefore to promote
CNS regeneration Schwann cell grafts must be
accompanied by the simultaneous infusion of additional
growth promoting factors.
4. Infusion of neurotrophic factors

Receptors to BDNF, NT-3 and CNTF have been
localized in the CNS (153, 1543, 155, 156, 157),
neurotrophin mRNA is present in the brain of adult mice
(45), and small amounts of the neurotrophins BDNF and
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NT-3 (158) are present in adult brain. These findings
suggest that one challenge for the CNS in its ability to
regenerate is the lack of sufficient growth promoting
factors. Although the introduction of either NGF (135,
158, 159, 160, 161), and NT-3 (162, 163) into the CNS
induce axon regeneration, the simultaneous introduction
of multiple exogenous neurotrophins (such as
combinations of NGF, BDNF, NT-3, CNTF, and NT-4)
(141, 155, 159, 161, 162, 164, 166, 167, 168, 169, 170),
induces more extensive regeneration within the spinal cord
thar any neurotrophic factor alone.

5. Infusion of neurotrophic factors combined with
Schwann cell grafts.

Induction of CNS regeneration by Schwann cell grafts
accompanied by aFGF (151) indicates that additional
factors are required for more successful regeneration.
Infusion of BDNF and NT-3 into the CNS simultaneously
with implantation of a Schwann cell graft induces more
regeneration than the Schwann cells alone or when they
are combined with a single neurotrophic factor (141, 142,
171, 172). Thus the use of even larger numbers of
neurotrophins would most likely bring about an even
greater amount of CNS regeneration.

6. Infusion of Schwann cell-released neurotrophic
factors combined with factors that block CNS growth
inhibiting factors.

The success of infusing the CNS with the IN-1 antibody
or PNS neurotrophic factors in promoting CNS
regeneration suggests that combining the two approaches
would further improve CNS regeneration. The
simultaneous infusion of the IN-1 antibody with the
infusion of NT-3 yields significantly better CNS
regeneration than either alone (173). Further experiments
are required to test the regeneration promoting influence
of combinations of IN-1 and other factors that block CNS
growth inhibiting factors, such as C-ABC, and B-
D-Xylosides, together with neurotrophic factors known
to promote CNS regeneration alone: NGF (135, 159, 81,
161,), NT-3 (163), or in combinations, such as or BDNF,
NT-3, CNTF, and NT-4 (141, 142, 158, 159, 161, 162,
164, 166, 167, 168, 169, 170).

7. Genetically modified cells as implants to promote
CNS regeneration.

As mentioned, a limitation of implanting Schwann cells
into the CNS it that the release of their entire complement
of neurotrophic and other factors is modified by factors
in the CNS environment. To avoid this difficulty attempts
have been made to engineer cells that continuously secrete
the factors considered important to promote CNS
regeneration such as NGF (150, 174, 164, 171, 175,),
BDNF and NT-4/5 (176), and NGF, BDNF, NT-3, or basic
FGF (177). Although these cells enhance CNS
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regeneration their influence is limited. However this in
not surprising since one week after Schwann cells have
been denervation they release a minimum of 7 identified
neurotrophic factors, all of which must be present
simultaneously to achieve optimal growth promotion
(178). Further, following their denervation, more than 60
genes cells are up and down regulated in denervated
Schwann and each has its own temporal pattern or
regulation (27, 28, 29). Thus for genetically modified cells
to be maximally effective they must be engineered to
release these same factors, in the appropriate ratios, and
time sequence.

8. An optimal approach?

Infusion of Schwann cell-released factors. Each of
the approaches discussed induces some, although often
limited, regeneration of the lesioned CNS, and when
several techniques are combined they appear to further
improve CNS regeneration over what is induced by any
single technique. Therefore optimal regeneration should
be induced by combining a number of the discussed
approaches. One combination that appears most promising
is infusing a mixture of factors known to block the
different CNS growth inhibiting factors while
simultaneously infusing the CNS with a cocktail of
physiologically released Schwann cell factors the
composition of which changes over time. To produce this
exact and ever changing cocktail of Schwann cell-released
factors would be extremely difficult task. However an
alternative and initial approach would be to continuously
harvest the Schwann cell released factors from Schwann
cell conditioned medium (CM), from host-derived
cultured Schwann cells, and infuse this cocktail into the
lesioned spinal cord.

Conclusion

Our increasing understanding of the factors that inhibit
CNS regeneration and those that promote PNS
regeneration, is allowing us to design new approaches by
which to change the CNS environment from one that it
inhibitory to one that is both permissive to and promotes
regeneration. Thus we can block the action of factors that
inhibit CNS regeneration while simultaneously
introducing factors that promote CNS regeneration. This
has lead to exciting experiments in which regeneration
can be induced in adult rats following spinal lesions
allowing them to walk. To improve recovery further
requires additional research to determine whether the CNS
contains yet unknown factors regeneration inhibiting
factors that must be blocked, and whether additional
regeneration promoting factors can be found. Thus we
have finally come to the point where there is real promise
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that in the not too distant future those suffering from
neurological deficits from spinal cord and brain injuries
will be able to recover some if not many of their lost
functions.

Resumen

A pesar de que la regeneracion del sistema nervioso
periférico (SNP) luego de una lesidon es sélida, la
regeneracion de sistema nervioso central (SNC) no se
completa. Esto se debe a las diferencias en el balance de
los factores que inhiben y promueven la regeneracion,
que en el SNC estan dirigidos hacia la inhibicién, mientras
que en el SNP se desvian hacia la promocion del
crecimiento del nervio. Ademas de carecer del factor para
promover la regeneracion, el SNC tiene una distribucion
ubicua de factores de distribucién que inhiben la
regeneracion. Las células de Schwann del SNP liberan
un niimero de factores neurotréficos caracterizados y no
caracterizados que ejercen una poderosa influencia en
inducir la regeneracion en los axones del SNP. Por lo
tanto, se han elaborado hipdtesis sobre la implantacion
de células de Schwann o de factores de infusion que estos
liberan hacia la médula espinal lesionada, los que deberian
conducir a la regeneracion de SNC. Aunque ain esta
limitado, ocurre una mejor regeneracion cuando ocurre
inhibicion simultanea de los factores de bloqueo de la
regeneracion y la presencia de factores liberadores células
de Schwann. Para mejorar mas el alcance de la
regeneracion del SNC, debemos determinar la mejor
combinacién de los factores neurotréficos para infundir
en el lugar de la lesion en SNC. En este articulo se revisa
lo que se conoce sobre la inhibicién y la promocién de la
regeneracion, tanto en el SNP y SNC asi como los
acercamientos que nos permitirdn cambiar el ambiente
celular del SNC a uno que permita y promueva la
regeneracion.
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