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The Syrian cardiomyopathic hamster (SCH) is an 
established animal model for genetic cardiomyopathy. 
The disease in the hamster develops through similar 
stages to those observed in humans with this condition. 
The pathophysiological basis for this condition in 
the hamster resides in an inherited mutation in the 
gene encoding for δ-sarcoglycan, a component of the 
dystrophin complex. Two basic mechanisms contribute 
to cardiomyopathy in this model: ischemic heart 
disease by vasospasms of the coronary circulation and 
cardiomyocyte loss due to intrinsic cell defects. This 
review focuses on the etiology of vascular dysfunction 
and its role in the development of heart failure (HF) in 
this animal model. The data presented suggest that the 
vascular renin-angiotensin-system (RAS) plays a critical 
role in the generation of increased coronary reactivity 

and resistance in young SCH that have not yet developed 
the clinical manifestations of HF. The increased 
reactivity of the coronary vasculature results from 
endothelial dysfunction secondary to Ang II-dependent, 
oxidative stress. These alterations favor the development 
of ischemic heart disease and cardiomyopathy in adult 
animals. Indeed, RAS blockade during early stages of 
the disease significantly improves the clinical signs of 
dilated cardiomyopathy in this experimental model. 
These findings have significant implications for the 
prevention and treatment of cardiomyopathy in patients 
with ischemic heart disease, in particular, to those with 
familial sarcoglycanopathies. 
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Heart failure (HF) is a pathophysiologic state in 
which the capacity of the heart to pump blood is 
decreased, leading to a mismatch between cardiac 

output and the metabolic demands of tissues. As a result, 
fatigue, generalized vasoconstriction, fluid retention and in 
severe cases, lung edema develops. The condition results 
mainly from end stage hypertensive disease, coronary 
dysfunction and valvular disease. HF is a major health 
problem in the world today, affecting approximately 1% 
of the population (1), and its incidence appears to be 
increasing, despite improvements in mortality rates from 
predisposing conditions (2). Heart failure leads to greatly 
increased morbidity and mortality among cardiac patients, 
with a prognosis little better than cancer (3-4). In the USA, 
heart failure affects about 2% of the total adult population, 
and contributes to more than 250,000 deaths per year (5). 
Therefore, there is a need for studies at the clinical and 
basic level to develop new therapeutic strategies for the 
treatment and prevention of this disease. 

The Syrian cardiomyopathic hamster as a model to 
study HF

The Syrian cardiomyopathic hamster model represents 
a well-documented (6-11) hereditary cardiomyopathy 
that is described by the following sequential stages: 
(A) immaturity (<30 days after birth), (B) acute 
focal myolysis of the myocardium (30-60 days), (C) 
fibrosis and calcification of necrotic patches (60-90 
days), (D) ventricular hypertrophy (BIO 14.6 strain) 
or dilation (BIO-TO2 strain) from 90-150 days and, 
(E) congestive heart failure (>150 days). The terminal 
phase begins at about 10 months of age. Therefore, 
the development of HF in this animal shares many 
similarities with the progression of the disease in 
humans. In addition, the acute myocarditis observed 
in patients who later developed cardiomyopathy has 
histological similarities to the myocardial changes 
observed during the development of cardiomyopathy 
in hamsters (12). Cardiomyocyte abnormalities related 
to calcium overload, SR Ca2+-channels, genetic defects 
of membrane structures and functions (13), alterations 
in β-adrenergic receptors (14), microvascular spasms 
(15-17), electrophysiological abnormalities (18), and 
oxidative stress (14, 19-21) are known contributing factors 
to the development of the disease in this animal model. 
In recent years, a role for the dystrophin-sarcoglycan 
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complex (22-25) in the etiology of cardiomyopathy 
in the hamster has been described. Indeed, a genomic 
deletion of the 5’ region of the δ-sarcoglycan gene is 
responsible for the cardiomyopathy in the BIO-TO2 
(22, 26). Deficiency of δ-sarcoglycan disrupts the 
dystrophin-associated glycoprotein complex in the 
plasma membrane of cardiomyocytes, leading to a loss 
of structural membrane integrity and susceptibility to 
mechanical damage during the contraction-relaxation 
cycle. The relevance of the dystrophin-glycoprotein 
complex in cardiomyopathy has been demonstrated 
in mouse models of sarcoglycanopathies, in which 
mutations in the β, δ, or γ sarcoglycan genes produce 
both muscular dystrophy and dilated cardiomyopathy 
that reproduce the phenotype of the BIO-TO2 strain. 
Accordingly, re-expression of the δ-sarcoglycan gene in 
null SCH, reduces cardiac and skeletal muscle injury and 
augments life-span (27), confirming the relevance of this 
gene to the pathophysiology of the disease. It is worth 
noting that mutations in the δ-sarcoglycan gene have 
been also reported in patients with idiopathic dilated 
cardiomyopathy and limb-girdle muscular dystrophy-
2F (28-31). The similarities between the disease in the 
hamster and that in humans make SCH an excellent 
animal model to study the pathophysiology of the disease 
and to evaluate new therapeutic strategies. 

Coronary spasms occur early during the necrotic 
phase of cardiomyopathy in SCH

Factor and colleagues (32) were the first to suggest 
that the infart-like pattern of necrosis (discrete patches) 
that takes place early in the development of dilated 
cardiomyopathy in SCH originates from transient coronary 
vasospasms that cause ischemia with reperfusion injury 
and focal myolysis. This fact has been long recognized in 
humans as a critical event in ischemic heart disease (33). 
Indeed, the calcium channel antagonist and vasodilator 
verapamil, prevents the occurrence of coronary 
vasospasms and the histological and functional alterations 
of the heart in various animal models of cardiomyopathy 
(15-17, 23, 32, 34). However, due to the fact that verapamil 
affects voltage-dependent, L-type calcium channels in 
both vascular smooth muscle (VSM) and cardiomyocytes 
(35), controversy exists as to whether vasospasms in 
SCH originate from primary alterations in the vascular 
wall or from secondary alterations to cardiomyocyte 
damage. Evidence for a primary role of VSM came from 
targeted ablation of δ-sarcoglycan gene in mice that 
leads to disruption of the sarcoglycan complex in VSM 
cells, together with cardiomyopathy and focal necrosis 
(36). In mice showing ablation of the α-sarcoglycan 
gene, which only affects cardiac and skeletal muscle 

sarcoglycan complex, neither cardiomyopathy or focal 
necrosis were present. Further evidence for a primary 
role of VSM δ-sarcoglycan in coronary spasms and 
cardiomyopathy comes from comparative studies on the 
effects of verapamil on δ-sarcoglycan-deficient mice and 
the dystrophin-deficient mdx mice (23). Verapamil was 
effective in ameliorating the cardiomyopathic phenotype 
in δ-sarcoglycan-deficient mice which demonstrates 
vascular dysfunction and cardiomyocyte necrosis. No 
beneficial effect of the calcium antagonist was observed 
in the dystrophin-deficient mdx mice, which showed 
cardiomyopathy without perturbations of the VSM 
sarcoglycan complex, or any other vascular dysfunction. 
These findings have been interpreted to indicate that 
mutations in the δ-sarcoglycan gene make cardiomyocytes 
prone to damage by intermittent ischemic events from 
transient coronary spasms (23). However, recent evidence 
(34, 37) in γ-sarcoglycan mutant mice model that develop 
cardiomyopathy with focal degeneration similarly to 
the hamster, supports the idea that spasms of coronary 
arteries are derived from a VSM cell extrinsic process 
(secondary in origin). γ-Sarcoglycan mutant mice with 
cardiomyocyte perturbations, demonstrate coronary 
artery vasospasms despite normal sarcoglycan complex 
in VSM. This finding illustrates that a primary defect 
in the VSM sarcoglycan complex is not required for 
the development of spasms and cardiomyopathy. In the 
γ-sarcoglycan mutant, verapamil reduces vasospasms 
and ameliorates the progression of the disease (34). 
These studies with transgenic mice provide support for 
a VSM cell involvement (vasospasms) secondary to 
cardiomyocyte damage. However, the δ-sarcoglycan 
downstream cellular mechanisms leading to vasospasms 
in SCH have not been established.

Coronary spasms could result from Ang II-induced 
endothelial dysfunction and hypercontractility of the 
vascular wall

Studies conducted by our research group (21, 38-40) 
with the aorta from the BIO-TO2 strain have revealed 
a significant number of alterations in vascular function 
in young (2-month-old) animals. These alterations 
include among others, endothelial dysfunction, increased 
contractile response to Ang II (38), enhanced vascular 
ACE activity (39), and enhanced 125I-Ang II binding 
capacity (40). In addition, we have reported increased Ang 
II-dependent, NAD(P)H oxidase-dependent, superoxide 
generation in aortic tissue, and elevated systolic blood 
pressure (21). Losartan, an AT-1 receptor blocker, 
abolished the increased oxidase activity and superoxide 
generation, together with the elevated blood pressure 
(21). Similar findings were observed following treatment 
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of animals with the antioxidant N-acetylcysteine (NAC). 
We have also found hyperreactivity to thromboxane 
(Figure 1A) and impaired bradykinin-dependent 
relaxation in the coronary circulation of young SCH 
(Figure 1B). Both of these abnormalities were reversed 
by treatment with losartan and NAC (unpublished data), 
demonstrating that Ang II-dependent oxidative stress 
plays a role in generating endothelial dysfunction in the 
coronary circulation. These observations in the aorta and 
coronary vasculature of SCH point to a primary role of 
local RAS in the development of vascular dysfunction 
in the initial phases of HF in this animal model. Indeed, 
the vascular alterations were observed in animals with 
normal echocardiographic parameters, Heart/BW ratios, 
and heart rate determinations (21). These findings 
indicate that heart function is still normal at this early age 
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Figure 1. Coronary Hemodynamics in Control (CT) and Cardiomyopathic (SCH) hamsters. The results shown represent the 
mean ±SEM of 8 hearts per group. Coronary resistance was determined from coronary flow and pressure determinations using a 
Langendorff heart preparation. Thromboxane (THX) and bradykinin (BKN) were infused into the coronary circulation at 0.1 and 
10 µM, respectively. Panel A illustrates the THX-induced increase in coronary resistance in 2-month-old CT and SCH, and panel 
B the BKN-induced coronary relaxation in THX-precontracted coronaries.

(2-month-old), despite focal, histological abnormalities 
present in the heart, and the functional alterations present 
in the vasculature. The abnormalities present in the 
vasculature of young hamsters must be distinguished 
from the vascular dysfunction (systemic and coronary) 
that characterize patients and animals with overt heart 
failure, and which are secondary to various neurohumoral 
compensatory mechanisms aimed at maintaining 
peripheral vascular tone and tissue perfusion (41-43). 
Indeed, SCH with overt HF demonstrates impaired nitric 
oxide (NO) downstream signaling (44), increased aortic 
and mesenteric artery reactivity (45), and reduced basal 
coronary perfusion (46-48).

The endothelial dysfunction present in the vasculature 
of SCH could result from impaired NO or EDHF-
dependent activation of KCa2+ and KATP channels (49-51). 
In Golden Syrian hamsters (normal hamsters), both 
basal and acetylcholine-mediated coronary relaxation 
depend on K+ channels (52), and there is evidence for 
inhibition of these structures by reactive oxygen species 
(ROS) (53-54). ROS has been implied in endothelial 
dysfunction in isolated coronary arteries from SCH (55). 
In the transgenic mouse model of dilated cardiomyopathy 
(Tgalphaq*44 mice), endothelial dysfunction in coronary 
circulation is associated with excessive ROS generation 
by cardiac NAD(P)H oxidase (56). 

Vascular wall hypercontraction could involve Rho-
kinase-dependent inhibition of myosin phosphatase 
which plays a central role in agonist-induced Ca2+ 

sensitization and hypercontraction of VSM cells (57). 
It is worth noting that Rho-kinase is involved in the 
stimulation of NAD(P)H oxidase and endothelial 
dysfunction that follows long-term treatment of rats 
with Ang II (58). Therefore, augmented Ang II in the 
coronary vasculature of SCH could precipitate spasms 
by inducing endothelial dysfunction and by promoting 
hypercontraction of the vascular wall. There is one 
report in rhesus monkeys that acute intracoronary 
administration of Ang II does not induce spasms (59). 
To our knowledge similar experiments in humans or in 
SCH are not available. It is possible that in the setting 
of endothelial dysfunction, vasospasms are triggered 
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by chronic exposure to Ang II. The latter, however, has 
not been established.

 
Vascular angiotensin-converting-enzyme (ACE) 
activity upregulation in 2-month-old SCH

Our findings indicate that increased vascular ACE 
activity in young SCH takes place at a critical stage, when 
early manifestations of cardiomyocyte deterioration are 
developing. ACE upregulation is neither observed in the 
heart and plasma of SCH at 2 months (39, 60-61), nor in 
the aorta from younger (1 month-old, unpublished data) 
or older (>6 month-old) animals (39). The temporal 
upregulation of vascular ACE correlates with the 
release of cardiac troponin-T at 8 weeks of age (62), 
supporting the notion that cardiac myolisis takes place at 
a time where RAS is upregulated and there is enhanced 
responsiveness of the vasculature to Ang II. We believe 
that our observations concerning ACE upregulation 
in the aorta are extensive to coronary arteries because 
Ang II-dependent, endothelial dysfunction and hyper-
reactivity to contractlile agonists, are present in both of 
these structures during the necrotic phase in SCH. In 
pig’s coronary arteries, Ang II induces vasoconstriction, 
through an AT-1 receptor that elicits superoxide 
production, impairs NO generation, and inhibits 
endothelium-dependent relaxation (63). Therefore, 
vascular ACE upregulation could play a key role in the 
etiology of coronary dysfunction in young SCH.

Vascular ACE in young SCH could be upregulated by 
reduced NO bioavailability

ACE is a key component of RAS that converts Ang 
I to Ang II, and degrades bradykinin. Its activity and/
or mRNA expression in the vascular wall has been used 
as an index of RAS activation in various experimental 
models (64-66). ACE upregulation in the perivascular 
area of coronary vasculature in mice correlates with 
cardiac superoxide production and the formation of 
microvascular lesions, and both of these alterations are 
sensitive to blockade with temocapril, (ACE inhibitor) or 
olmesartan, an AT-1 receptor blocker (68-69). We believe 
that vascular ACE upregulation in young SCH could be 
secondary to oxidative stress and/or nitric oxide synthase 
inhibition, both of which diminish NO bioavailability 
(70). Indeed, chronic administration of Nω-nitro-L-
arginine methyl ester (L-NAME) or asymmetric dimethyl 
arginine (ADMA), inhibitors of NO synthase, increases 
arterial ACE activity in rats (71-72) and hamsters (Figure 
2A) and in coronary arteries of rats and mice (68-69, 
73). By contrast, SNP (an NO releaser) inhibits ACE 
activity in the aorta of the hamster (Figure 2B). High 
ADMA levels are associated with ACE upregulation and 
secondary pathological alterations in coronary and cardiac 
tissues in mice (74). These effects were not observed 
in transgenic mice overexpressing dimethylarginine 
dimethylaminohydrolase-2, the enzyme responsible for 
ADMA degradation. The regulation of ACE expression 

Figure 2. Effect of L-NAME on vascular ACE activity in 2-month-old CT and SCH.  Aortic tissue homogenates were treated with 
L-NAME 1 mM (Panel A) or SNP 1 µM (Panel B) for  6 hours, after which  ACE activity was determined using fluorometric assay 
(Cushman DW, Cheung HS. Biochem Biophys Acta 1991;250:261-265). The values shown are the means ± SEM of 8 experiments. 
(*): P<0.05 when compared with untreated group. 
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appears to be mediated by p38 MAPK (74), a kinase 
that could be modulated by the NO-cGMP/PkG cascade 
(75-76). p38 MAPK is also a redox-sensitive target and 
has been implicated in cardiovascular pathology (77-78). 
It has been proposed that ADMA regulates p38 MAPK 
independently of NO, because ACE activation is observed 
in eNOS-KO mice (68-69). Nevertheless, our studies with 
SNP (Figure 2 B) support the contention that NO regulates 
ACE expression and/or activity. Therefore, alterations that 
reduce NO should promote p38 MAPK-dependent ACE 
activity and hence, vascular RAS upregulation. 

Clinical significance of vascular RAS-upregulation 
and dysfunction to HF

Vascular RAS upregulation could accelerate the 
development and progression of HF by its effect on coronary 
hyper reactivity. One of the hallmarks of HF is an early 
endothelium-dependent (ED) dilation of the coronary 
circulation that compensates for an increased cardiac 
workload (43). If the vascular wall is hyper reactive by tissue 
RAS upregulation, the ED dilation of the coronary circulation 
may be impaired, leading to cardiac decompensation. 
Indeed, in patients with cardiomyopathy, the degree of 
coronary microvascular dysfunction is an independent 
predictor of cardiac events, increased progression of heart 
failure and relative risks of death (79).

Early  therapeut ic  intervent ion in  di lated 
cardiomyopathy

The data presented here supports the idea that the 
development of cardiomyopathy in the hamster, involves 
early vascular RAS upregulation. This phenomenon 
could induce hyper reactivity of the vascular wall and 
coronary vasospasms that are considered fundamental in 
the development of dilated cardiomyopathy. To evaluate 
the early involvement of RAS in the development of 
cardiomyopathy in the hamster, we examined (80) 
whether a combination of enalapril (25 mg/kg/day) 
and losartan (10 mg/kg/day) administered from 1 to 
5 months of age protects against the development of 
dilated cardiomyopathy. Indeed, RAS blockade in SCH 
significantly improved cardiac output index 53%, left-
ventricular-end diastolic volume 30% and left-ventricular-
end-systolic volume (LVESV) by 62%, and increased 
ejection fraction by 48% (P<0.05). By contrast, treatment 
with the β-blocker carvedilol (1 mg/kg/day) for the same 
period of time only reduced LVESV by 28% and increased 
EF by 15%. These results indicate that RAS plays a 
fundamental role in early stages of dilated cardiomyopathy 
in SCH, to the extent that a combination of enalapril and 
losartan is more effective than carvedilol in reducing 
the development of the disease, despite the hypotensive 

effect of the adrenergic antagonist. These studies could be 
criticized on the basis of the timing of drug administration 
(pre-heart failure stage), combined drug treatment vs. 
monotherapy, and doses used. Nevertheless, they have 
significant therapeutic implications when extrapolated 
to patients prone to cardiomyopathy. In particular, they 
suggest that early blockade of RAS could be beneficial 
in subjects with familial sarcoglycanopathies, or with 
ischemic cardiomyopathy even in the absence of 
manifested heart disease. Further studies are necessary 
to confirm the link between vascular RAS and coronary 
spasms in ischemic heart disease. 

Conclusions

We hypothesize that upregulation of vascular RAS 
with its secondary oxidative stress leads to dysfunction of 
coronary vasculature (Diagram 1) promoting vasospasms 
early in the life of these animals. These alterations could 
facilitate the appearance of lesions in the myocardium by 
inducing transient ischemic events that affect susceptible 
cardiomyocytes. Once ACE is upregulated, a positive 
feedback cycle comes into play by the reduction in NO 
bioavailability due to activation of vascular NAD(P)
H oxidase by Ang II. We can only speculate that ACE 
upregulation in the early stages of the disease in SCH, 
could result from alterations in NO bioavailability and/or 
ROS generation secondary to the δ-sarcoglycan genetic 
abnormalility of the hamster.

Resumen

El hámster cardiomiopático sirio (SCH) es un modelo 
animal establecido de cardiomiopatía genética. La 
enfermedad se desarrolla en el hámster a través de etapas 
similares a las que se observan en pacientes con esta 
condición. Las bases patofisiológicas para el desarrollo 
del fallo cardiaco en el hámster radican en una mutación 
heredada en el gen que codifica para el δ-sarcoglicano, que 
es un componente del complejo de distrofina. Existen dos 
mecanismos básicos que contribuyen al desarrollo de la 
cardiomiopatía en este modelo: la enfermedad isquémica 
causada por vasospasmos de la circulación coronaria, y la 
pérdida de cardiomiocitos debido a defectos intrínsecos. 
Esta revisión de literatura está enfocada en la etiología de la 
disfunción vascular y su posible rol en el desarrollo de fallo 
cardiaco en este modelo animal. Los resultados presentados 
sugieren que el sistema renina-angiotensina (RAS) vascular 
juega un papel crítico en el aumento de la reactividad y la 
resistencia coronaria observada en SCH jóvenes que aun 
no presentan las manifestaciones clínicas del fallo cardiaco. 
La reactividad aumentada de la vasculatura coronaria surge 
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como consecuencia de la disfunción endotelial secundaria 
al estrés oxidativo dependiente de angiotensina II. Estas 
condiciones favorecen el desarrollo de la enfermedad 
isquémica y la cardiomiopatía en animales adultos. De 
hecho, el bloqueo del RAS en una etapa temprana del 
desarrollo de la condición, mejora significativamente los 
síntomas clínicos de la cardiomiopatía dilatada en este 
modelo experimental. Estos hallazgos tienen implicaciones 
significativas en la prevención y tratamiento de la 
cardiomiopatía en pacientes con enfermedad isquémica, y 
en particular, en aquellos con sarcoglicanopatia familiar.
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Diagram 1. We propose that oxidative stress decreases the 
bioavailability of NO in coronary vessels (Early Alterations), 
leading to vascular ACE upregulation and high levels of 
Ang II in tissues. These actions induce a self-sustaining 
cycle that promotes oxidative stress by stimulating NAD(P)
H oxidase activity. Increased superoxide anions aggravate 
NO bioavailability at the vascular wall and together with the 
activation of Rho-kinase by Ang II, impair endothelial function, 
leading to coronary vasospasms and ischemic lesions in the heart 
of young Syrian Cardiomyopathic hamsters.
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