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 Restoring function to damaged peripheral nerves with a gap remains challenging, 
with <50% of patients who undergo nerve repair surgery recovering function. Further, 
despite enormous efforts to improve existing techniques and develop new ones, the 
percentage of patients who recover function and their extent of recovery has not 
increased in almost 70 years. Thus, although sensory nerve grafts remain the clinical 
“gold standard” technique for attempting to restore function to nerves with a gap, 
they have significant limitations. They are effective in restoring good to excellent 
function only for gaps <3-5 cm, repairs performed <3-5 months post-trauma, and 
patients <20-25 years old. As the value of any of these variables increases, the extent 
of recovery decreases precipitously, and if the values of two or all three variables 
increase, there is little to no recovery. Therefore, novel techniques are required 
that increase the percentage of patients who recover function and the extent of 
their recovery. This review discusses the limitations of sensory nerve grafts and 
other techniques currently being used to repair nerves. It also discusses the use 
of autologous platelet-rich plasma (PRP), which appears to be the most promising 
technique for inducing sensory and motor recovery even when the values of all 
three variables are significantly greater than when sensory nerve grafts alone are 
not effective. Thus, there is finally the promise that patients who presently have 
limited to no chance of any recovery may recover good to excellent sensory and 
motor function. [P R Health Sci J 2022;41(2):89-95]
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Sensory nerve autografts are the clinical “gold standard” 
for bridging nerve gaps in attempts to restore function 
(1). However, the extent of neurological recovery they 

induce is negatively influenced by increasing gap length, delay 
between nerve injury and repair, and patient age (2). Thus, 
sensory nerve grafts reliably induce good to excellent recovery 
only across relatively short nerve gaps (<3-5 cm) (1), when 
repairs are performed relatively soon after nerve trauma (<3-5 
months) (3), patients are relatively young (<20-25 years old) 
(4), and it requires sacrificing a sensory nerve function. As 
the values of any of these variables (gap length (5), delay (6), 
and patient age (4)) increase, the extent of recovery decreases 
precipitously. Further, as the values of any two or all three 
variables increase, there is generally limited to no recovery 
(7). Consequently, most patients are not offered nerve repair 
surgery, and of those who are, less than 50% recover any sensory 
or motor function (7). This rate has not improved in almost 70 
years (8). Therefore, new techniques are required that induce 
more extensive recoveries in a larger percentage of patients 
under all conditions. 

This review examines the factors that underlie the limitations 
of sensory nerve grafts in promoting axon regeneration. It 
also examines techniques presently being applied clinically to 
overcome each of these limitations. It next examines studies 

showing that the application of autologous platelet-rich plasma 
(PRP) enhances the extent of axon regeneration. It then discusses 
two novel nerve gap repair techniques showing that a unique 
application of PRP to nerve gaps induces axon regeneration 
and good to excellent recovery even when the values of two or 
all three variables that limit recovery were simultaneously large, 
conditions where no other existing techniques are effective. 
Finally, it discusses the potential mechanisms by which PRP acts. 
It concludes by showing that function can be restored without 
sacrificing a sensory nerve function. 

The following section addresses how each of the limitations 
mentioned above can be minimized, leading to improved axon 
regeneration and functional recovery.

I. Limitations to axon regeneration and functional recovery
One factor underlying the decreasing extent of recovery with 

increasing delay between nerve trauma and repair time is that 
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axotomized neurons lose their capacity to extend axons (9). This 
is, in part, considered to result from neurons downregulating 
their expression of neuregulin 1 (10). There is no method 
for clinically up-regulating the expression of neuregulin-1 to 
enhance axon regeneration. However, clinically, the capacity of 
axotomized neurons to regenerate is restored by applying as little 
as one hour of electrical stimulation (11). Electrical stimulation 
promotes axon regeneration by increasing neuronal cAMP levels 
(12), causing the upregulation of BDNF, and its trkB receptor, 
RAGs, GAP-43, cytoskeletal proteins actin, tubulin (13, 14), 
and neuregulin 1 (15), while increasing local blood flow (16), 
induces IGF-1 synthesis (17), macrophage recruitment and 
activation (18, 19). An additional technique for increasing the 
capacity of axotomized neurons to regenerate is by applying as 
few as one neurotrophic factor (20), although the speed of axon 
regeneration is increased when multiple neurotrophic factors 
act together. (21).

Also limiting the extent of axon regeneration across long 
nerve gaps bridged with a sensory nerve graft and when nerve 
repairs are performed with a long delay between nerve trauma 
and nerve repair is Schwan cell changes. Thus, when Schwann 
cells lose contact with an axon, they become senescent and 
stop releasing neurotrophic factors which are required to 
promote axon regeneration (5). Similar to how the application 
of neurotrophic factors to axotomized neurons induces them to 
regenerate, those same factors reverse Schwan cell senescence 
and promote their up-regulation of the synthesis and release 
of neurotrophic factors (20). Schwann cell senescence can be 
reversed by a single brief period of electrical stimulation (22). 

Clinically, a graft must be vascularized for axons to regenerate 
across gaps of >6 cm (23). However, because the vascularization 
of long nerve grafts is slow, by the time the regenerating axons 
reach the distal part of the graft, it is not vascularized and cannot 
support axon regeneration (6). The lack of vascularization 
causes the grafts to develop a necrotic environment, which 
inhibits axon regeneration. However, in animal models, the 
extent of graft vascularization, axon regeneration, and functional 
recovery across long nerve grafts are all significantly increased by 
the use of vascularized nerve grafts (24). Further, it is increased 
by applying vascular endothelial growth factor (VEGF) to nerve 
grafts, when cells within a nerve graft are induced to overexpress 
VEGF (25) or when VEGF is added to acellular or laminin-gel 
grafts (26).

Another variable contributing to the decreased capacity of 
axons to regenerate across nerve gaps is increasing patient’s 
age. This is because increasing age is associated with decreased 
nerve injury-induced angiogenesis (27). This results in nerve 
grafts failing to become vascularized (28). However, in aged 
rats (29) and clinically (23), graft vascularization can be 
induced by administering VEGF, leading to extensive axon 
regeneration (30). 

The following section examines techniques other than 
sensory nerve grafts currently used in animal models and 
clinically to restore function across nerve gaps.

II. Alternative techniques for promoting axon regeneration 
across nerve gaps

Allografts 
A significant limitation of using sensory nerve grafts to 

promote functional recovery is that their use requires creating 
a permanent sensory deficit. This drawback led to the testing 
of acellular allografts (donor lengths of nerve after removing all 
cells and antigenicity) to avoid the need to sacrifice a sensory 
nerve function. Although allografts are FDA-approved and used 
clinically, but far less frequently than sensory nerve grafts. This 
is because their efficacy decreases with increasing gap length 
(31), being effective only for gaps ≤7 cm in length (32). In 
addition, they often fail to promote axon regeneration across 
gaps of <2 cm in length (personal clinical observations), and 
they are not effective if the values of two or all three variables are 
simultaneously large. Therefore, allografts are not recommended 
or FDA-approved for use in bridging “long” nerve gaps, which 
are considered >3 cm (5).

The limitation of acellular allografts in promoting axon 
regeneration and functional recovery across long nerve gaps 
can be reduced by: (1) by infusing them with neurotrophic 
factors (33), (2) autologous Schwann cells (34), and other 
cell types (35), or (3) filling them with autologous platelet-
rich plasma (PRP) (36). A drawback in using PRP is its lack of 
FDA approval for this clinical use, although PRP can be used 
off-label. Despite these approaches improving the efficacy of 
allografts in promoting axon regeneration across short nerve 
gaps, these techniques remain less effective than autografts for 
long gaps (37). 

Conduits
An alternative approach for bridging nerve gaps in animal 

models and clinically is the use of conduits composed of 
various materials, including fibrin (38), decellularized human 
umbilical artery (39), muscles (40), veins (41), and FDA-
approved collagen tubes (42). Their efficacy in promoting 
axon regeneration is increased by filling them with muscle 
(43), minced peripheral nerve (44), or neurotrophic and 
other factors (45). However, although empty conduits can 
be used clinically, most of the materials used to fill them to 
enhance axon regeneration cannot be used clinically. Thus, 
clinically, empty conduits are generally not used except for 
what is referred to as non-critical sensory nerve repairs when 
the gaps are <2 cm (46).

The following section discusses evidence showing that the 
application of PRP enhances the extent of axon regeneration.

III. PRP
Platelets evolved as a source of over 300 different compounds 

(47). Their factors serve a multiplicity of functions, including 
promoting axon regeneration (48), hemostasis (49), wound 
healing (50), vascularization (51), acting as an anti-bacterial 
agent (52), and reducing inflammatory disorders such as sepsis 
and other infections (53). 
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Due to the host of factors contained in and released by 
platelets, PRP has been tested in various animal models and 
clinically for its efficacy in promoting axon regeneration. 
PRP enhances the extent of axon regeneration when clinically 
injected onto (54) or into nerves (55). In animal models, the 
extent of axon regeneration is increased by applying PRP to the 
site of a nerve crush (56), nerve stump anastomosis site (57), 
and by filling autografts (58), acellular nerve graft (36), and 
conduits (59) with PRP. Thus, extensive evidence shows that 
PRP is effective in promoting axon regeneration. 

Although the application of PRP improves the extent of axon 
regeneration, there have been few studies examining whether 
it can enhance the capacity of sensory nerve grafts to promote 
axon regeneration or can satisfactorily induce good axon 
regeneration across nerve gaps without a sensory nerve graft. 
The following section examines two novel techniques testing 
this capacity of PRP.

IV. Novel PRP technique promoting extensive axon 
regeneration and recovery

Recent work shows that, clinically, two techniques involving 
unique applications of PRP are the most effective techniques 
for restoring function to nerves with gaps. The first involves 
bridging a nerve gap with a sensory nerve graft within a 
PRP-filled collagen tube (60). This induced excellent axon 
regeneration and recovery across one 9 cm and two 11 cm gaps, 
even when the repair was performed 2.7 years post-trauma in a 
and 51 years old patient (60). The second technique involved 
bridging a gap with only a PRP-filled collagen tube (61). This 
technique was effective despite the repair of a 12 cm long gap, 
3.25 years post nerve trauma in a 48-year-old patient (61). 
Thus, recovery was restored even though the values of all three 
variables that typically restrict or prevent axon regeneration and 
recovery were singly and simultaneously large. 

These studies show that platelets contain all the factors 
required to induce significant axon regeneration and recovery 
across nerve gaps even when the values of two or all three 
variables are simultaneously larger than when sensory nerve 
grafts alone are effective. Further, the recovery when using 
only a PRP-filled collagen tube shows that significant axon 
regeneration and functional recovery develop without the need 
to sacrifice a sensory nerve graft. Further studies are required 
to determine which techniques induce the most reliable and 
effective recovery.

It is hypothesized that, as indicated earlier in this review, PRP 
enhances the extent of axon regeneration is releasing neurotrophic 
and other factors that act directly on the axotomized neurons. 
Simultaneously, the same or other factors act on the senescent 
Schwann cells of the nerve graft and distal portion of the nerve 
to reactivate them, leading to their synthesis and release of 
regeneration-promoting neurotrophic and other factors (62). 

The following section examines platelet-released factors that 
may participate in inducing extensive axon regeneration and 
their mechanisms of action.

V. Potential mechanisms of PRP promoting axon 
regeneration and recovery

Platelet-released VEGF may play a significant role in allowing 
axons to regenerate across all gaps, but especially for long nerve 
gaps, gaps in older patients, and long gaps in older patients. 
VEGF can act by inducing vascularization of the PRP/graft or 
the PRP alone within a gap (23, 63). However, because platelets 
release both VEGF and IGF-1, the combination may promote 
more extensive angiogenesis, axon regeneration, and functional 
recovery than is exerted by either alone (64). 

Other potential roles VEGF can play to promote axon 
regeneration include being a chemoattractant for macrophages 
(65). This serves two purposes, first recruiting macrophages 
that can phagocytose the axon and myelin debris in the nerve 
graft, which, if not removed, inhibits axon regeneration (66, 
67). Second, recruited macrophages release VEGF (65, 68), 
which induces further vascularization (65, 67, 69). The 
macrophage-released VEGF induces the development of new 
blood vessels, which are critical for vascularization and direct 
Schwann cell migration into the nerve gap site (65). VEGF also 
acts as a Schwann cell chemoattractant while stimulating their 
proliferation (5). Without Schwann cell recruitment, there are 
no Schwann cell-released regeneration-promoting neurotrophic 
factors (5, 70). Finally, VEGF acts as a neuroprotective agent 
by inducing neuron upregulation of NGF and GDNF, which 
further enhances axon regeneration (64).

Platelet releases many other factors that may also enhance 
axon regeneration. PDGF induces axon outgrowth across nerve 
gaps bridged with conduits (71). It is also a potent mitogen 
for Schwann cells (72, 73), which induces them to up-regulate 
their synthesis and release of PDGF (74), while promoting the 
synthesis of the extracellular matrix (75). PDGF also induces 
angiogenesis (76, 77), which, as just discussed, is essential for 
the invasion of Schwann cells to the nerve injury site and their 
action in inducing graft vascularization, which creates a cellular 
environment that supports axon regeneration. 

Platelet-released IGF-1 applied to nerve crush sites induces 
axon regeneration (78) while promoting Schwann cell motility 
proliferation and differentiation (73), promotes actin

cytoskeletal remodeling (79), induces angiogenesis (78), 
promote the synthesis of the extracellular matrix (75), and 
stimulates neuron protein synthesis (80). Finally, IGF-1 
enhances axon regeneration in aged animals (81). 

Platelet-released IL-10 promotes axon regeneration by 
creating an anti-inflammatory environment, partly by inducing 
macrophages to transition to their M2 anti-inflammatory 
phenotype (82-84). This results in suppressing macrophage 
release of the pro-inflammatory cytokines TNF-α, IL-6, and 
IL-1 (85, 86), while inducing their release of anti-inflammatory 
cytokines, such as IL-10 (84, 87, 88). 

Platelet-released TNF-α induces NGF expression (89). NGF 
enhances axon regeneration (90). 

Although platelet-released TGF-β1 may initially reduce axon 
regeneration by stimulating macrophage invasion and releasing 
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pro-inflammatory mediators (93), longer TGF-β1 exposure 
suppresses inflammation (86, 93-96), allowing for increased 
axon regeneration. TGF-β1 also promotes axon regeneration 
by inducing angiogenesis and extracellular matrix synthesis (75, 
91). It also reactivates long-term denervated Schwann cells and 
induces their migration into nerve injury sites where they release 
axon regeneration-promoting factors (92-94). 

Platelet-released FGF-1 promotes cell proliferation, 
angiogenesis, differentiation, cell migration (95) and enhances 
axon regeneration and functional recovery when applied to 
nerve neurorrhaphy sites (96) and added to conduits bridging 
nerve gaps (97). It acts, in part, by promoting Schwann cells 
proliferation (98). 

The role of platelet-released BDNF is shown by it enhancing 
the extent of axon regeneration when applied to injured nerve 
neurorrhaphy sites (99), within conduits (100, 101), and when 
injected into injured nerves (102). BDNF applied to autographs 
increases the number of regenerating sensory and motor axons 
by up to 4-fold (25, 103, 104) and induces long-term axotomized 
neurons to extend axons (20). BENF also enhances Schwann 
cell proliferation (25, 99) and is even effective when applied 
following long-term axotomy (99). 

Conclusions

While sensory nerve grafts remain the clinical “gold standard” 
for bridging nerve gaps to promote axon regeneration and 
recovery, their limitations are so significant that <50% of patients 
recover good to excellent sensory and motor function. Although 
various techniques increase the efficacy of sensory nerve grafts, 
allografts, and conduits in promoting axon regeneration, that 
is insufficient for restoring function to most clinical nerve 
injuries. However, two novel techniques involving bridging 
a nerve gap with a sensory nerve graft within a PRP-filled 
collagen tube or only with a PRP-filled collagen tube induce 
good axon regeneration and recovery, even when the values 
of two or all three variables that restrict axon regeneration are 
simultaneously large. In addition, one of these techniques shows 
that function can be restored without sacrificing a sensory 
nerve function. Further testing of these techniques should 
lead to the development of an off-the-shelf product that can 
be cut to the appropriate length of a nerve gap to be repaired 
and secured in place leading to the reliable recovery of good to 
excellent sensory and motor function under conditions where 
it is presently impossible.

Resumen 

La restauración de funcionalidad en nervios periféricos 
luego de un trauma continúa siendo un gran reto, con < 50% 
recuperando funcionalidad después de un procedimiento 
reconstructivo. A pesar de los enormes esfuerzos para crear 
y mejorar técnicas existentes, el porcentaje de pacientes que 
recuperan su funcionalidad no ha aumentado significativamente 

en casi 70 años. Aunque actualmente el uso de injerto de nervios 
sensoriales es el método de elección para intentar restaurar 
nervios traumatizados con una separación, este procedimiento 
sufre de muchas limitaciones. Esta técnica ha sido efectiva en 
restaurar función buena a excelente en separaciones de nervios 
de <3-5 cm, reparaciones completadas antes de < 3- 5 meses 
después del accidente y en pacientes entre 20 a 25 años de edad. 
El grado de recuperación puede disminuir precipitadamente a 
medida que el valor de alguna de estas variables aumente, y habría 
poca o ninguna recuperación si dos o más variables aumenta. Es 
por esto que urge la necesidad de estudiar nuevas técnicas que 
puedan aumentar el porcentaje de funcionalidad y el grado de 
recuperación en esta población. El objetivo de esta revisión es 
analizar las limitaciones de los injertos de nervios sensoriales 
conjunto a otras técnicas quirúrgicas que se utilizan actualmente 
para reparar nervios periféricos con separación. En adición, se 
discutirá el uso de plasma autólogo rico en plaquetas (PRP), el 
cual actualmente se ha descrito como la técnica más prometedora 
en inducir la recuperación sensorial y motora en pacientes que 
requieran un injerto de nervio sensorial por lesiones periféricas, 
aun cuando las variables antes descritas estén aumentadas. 
Por lo tanto, finalmente hay un procedimiento que promete 
devolverle al paciente funcionalidad sensorial y motora de buena 
a excelente en lesiones de nervios periféricos con separación que 
anteriormente no tenían oportunidad de recuperar. 

List of abbreviations

PRP   platelet-rich plasma
VEGF   vascular endothelial growth factor
FDA   Food and Drug Administration
BDNF  brain-derived neurotrophic factor
trkB receptor  tyrosine B receptor
RAGs   regeneration-associated genes
GAP-43 growth-associated protein-43
IGF-1   insulin-like growth factor-1
cAMP  cyclic adenosine monophosphate
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