
PRHSJ Vol. 43│No. 4│December, 2024186

Breast and Colorectal Cancers in Women: a Meta-Analysis 
Driven by BioOptimatics

Xavier J. Aguilar-García, MS*; Alibeth E. Luna Alvear, MS†; Isis Narváez-Bandera, PhD†¶; 
Deiver Suárez-Gómez, PhD†; Clara E. Isaza, PhD†‡; Mauricio Cabrera-Ríos, PhD*†

*Industrial Engineering Department, The Applied Optimization Group, University 
of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico; †Graduate Program in 
Bioengineering, The Applied Optimization Group, University of Puerto Rico at 
Mayagüez, Mayagüez, Puerto Rico; ‡Biology Department, University of Puerto Rico at 
Mayagüez, Mayagüez, Puerto Rico; ¶Department of Biostatistics and Bioinformatics, 
Moffitt Cancer Center

The authors have no conflict of interest to disclose.

Address correspondence to: Prof. Mauricio Cabrera-Ríos, Department of Industrial 
Engineering and Graduate Program in Bioengineering, University of Puerto Rico at 
Mayagüez, Mayagüez, PR 00681-9000. Email: mauricio.cabrera1@upr.edu

Globally, breast cancer (BC) is the most diagnosed cancer 
in women, with an estimated 2.3 million new cases (1,2) 
each year. In men, prostate cancer is the most diagnosed 

one, with an estimated 1.4 million new cases, annually. For both 
sexes, colorectal cancer (CRC) is the third most common cancer, 
having an estimated 1.9 million new cases in 2020. In the US, 
the mortality rate due to BC has been declining, but it is still the 
leading cause of cancer death in women, accounting for 6.9% of 
all cancer deaths (in women) in 2020. Accounting for 9.2% of all 
cancer deaths in that same year, CRC is also a significant cause of 
cancer death. The burdens of both BC and CRC are expected to 
rise, with a projected 41% and 68.5% increase in cases of BC and 
CRC, respectively, by 2040 (1–3). These statistics emphasize 
the importance of continuing efforts in cancer prevention, early 
detection, and effective treatment to address the growing burdens 
of BC and CRC.

There are notable differences in cancer incidence, survival, 
and mortality rates between men and women. In BC, women 
have a higher incidence rate than men do, but men have higher 
mortality rates (1,2,4). In contrast, CRC is more common in men 
than women (1). These differences are due to the role played 
by sex in cancer biology. Research on sex differences in cancer 
mechanisms shows that sex chromosomes and hormones play 
significant roles in gene expression, immune system response, 
and cancer progression (5,6). Moreover, female patients have 
more robust innate and adaptive immune responses than do 
male patients, reducing cancer mortality risk in female patients 
because of differences in hormone levels and epigenetic, genetic, 
and psychosocial factors. Women often show different symptoms, 

respond differently to treatments, and experience other side effects 
than men do (5). However, sex-specific differences are often 
overlooked in clinical trials, with women being underrepresented 
in the sample populations (with the exception, of course, of 
those trials in which women-specific cancers are the focus). 
Several reports have highlighted this underrepresentation, calling 
for greater attention being paid to women’s health in clinical 
trials (excluding BC) (7,8). In addition, identifying the genes 
and mechanisms underlying these differences is essential to 
developing more targeted and effective cancer treatments for this 
population—female cancer patients.

Microarray experiments have significantly advanced the 
field of oncology by enabling the simultaneous measurement 
of thousands of gene expression levels across various samples. 
The technology used in these experiments, namely microarrays, 
provides a comprehensive view of gene expression patterns in 
different types of cancer. However, the analysis of microarray 
experiments typically requires normalization and shows 

Objective: This meta-analysis explored genes in common between breast cancer (BC) and colorectal 
cancer (CRC) in women. Breast cancer and CRC are causes of significant morbidity and mortality in 
women worldwide. Research has shown that women are underrepresented in clinical trials, especially in 
oncology; studying sex differences in cancer addresses this lack.

Methods: Ten GEO (Gene Expression Omnibus) dataset (5 BC and 5 CRC) were used to identify genes 
in common. Correlated networks were constructed and analyzed using BioOptimatics methodologies, 
including multiple criteria optimization and minimum spanning tree.

Results: Eighteen differentially expressed genes were identified, with such core genes as B3GNT3, 
CALU, CD46, DCN, DLX4, and others showing high frequencies. The study also identified 289 diseases 
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and CRC were found for 5 genes, while 7 were linked to other cancer types.
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indicate that this methodology, BioOptimatics, can help in the discovery of new pathways and biomarkers 
for BC and CRC in women.
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redundancy, and their results depend on managing parameters, 
which can affect meta-analysis (MA) outcomes. Despite these 
challenges, MAs of gene expression data can identify common 
signaling pathways in cancer, leading to valuable insights into 
cancer biology (9–11).

A significant MA of gene expression data from microarray and 
next-generation sequencing experiments across multiple cancers, 
including BC and CRC, revealed correlations in gene expression 
patterns. Notably, this analysis pinpointed 2 genes, ABCA8 and 
S100P, as being overexpressed in both BC and CRC during the 
tumoral process. Moreover, gene expression–based signature 
approaches have identified 3 differentially expressed genes (DEGs), 
CEACAM5, GATA3, and TSPAN8, that aid in the identification of 
tumor tissue origins (10,12–14). Subsequent studies have delved 
into broader multi-cancer biomarker signatures, spotlighting key 
genes and signaling pathways linked to BC and CRC. This body 
of research has led to a deeper understanding of cancer biology 
and the potential for developing targeted therapies based on the 
insights derived from it (15–26).

This work aimed to investigate commonalities between 
BC and CRC by evaluating gene expression in samples from 
women that were taken from 10 GEO (Gene Expression 
Omnibus) dataset, 5 of BC (27–31) and 5 of CRC (31–34). The 
objective was to identify shared DEGs and patterns. The study 
used BioOptimatics tools, which are based on mathematical 
optimization. The BioOptimatics tools can be accessed at the 
address https://github.com/DeiverSuarez/OBAMA. The results 
revealed novel correlations in common signaling pathways, 
presenting new research possibilities for BC and CRC in the 
female population.

Materials and Methods 

The present study followed the recommendations specified in a 
2022 article from Diaz-Uriarte et al. (11). These recommendations 
were related to choosing a suitable study design that would 
effectively integrate different data types, assessing the value of 
clinical versus omics data, and choosing suitable preprocessing and 
filtering approaches. In addition, the adoption of BioOptimatics 
methods helps preserve objectivity and repeatability in the results. 
Figure 1 shows the 4 stages of the study.

Stage 1: GEO Dataset Selection & Preprocessing
Experimental data for BC and CRC were obtained from 

public datasets (27–34). The first step in selecting the data was 
establishing the inclusion and exclusion criteria. One of the 
inclusion criteria was that the microarray dataset must contain 
samples without cancer (controls) and samples with cancer 
(disease). Another criterion was that each microarray dataset 
had to have samples from women in both groups (control and 
disease). Finally, at least 1 microarray dataset per disease needed 
to be included.

The exclusion criteria were as follows: Samples from men were 
not included in the study; samples consisting of tissue containing 
any disease or diseases other than the diseases of interest were not 
included in the study. Samples from men were not included in 
this study because it was aligned with the objectives and efforts 

required to address female health and avoid sex-biased outcome 
results. In addition, samples consisting of tissue containing 
any disease or diseases other than the diseases of interest and 
those that had been treated for conditions other than BC and 
CRC were not included because this study intended to identify 
potential biomarkers by analyzing the relative gene expression 
through the absolute differences between control and disease 
states.

Posterior data extraction and preprocessing were conducted 
using R code developed by our research group and described in 
Sánchez-Peña et al., Camacho-Cáceres et al., Lorenzo et al., Isaza 
et al, and Narváez-Bandera et al. (35–39). This step calculated 
the median of the relative expression to consolidate repeated 
genes and remove the samples from men, those consisting of 
tissue containing any disease or diseases other than the diseases 
of interest, and those that had been treated for conditions other 
than BC and CRC and that had been included in some of the 
10 microarray datasets. The data extraction and synthesis tasks 
enabled the subsequent BioOptimatics analyses (39).

Stage 2: Preliminary Multiple Criteria Optimization 
Analysis

This study used multiple criteria optimization (MCO) to 
identify DEGs. The performance measures selected were the 
absolute values of the differences between the medians and means. 
These values were calculated using both control samples and 
disease samples from each BC and CRC microarray dataset. Ten 
consecutive Pareto-efficient frontiers were consistently identified 
for each MCO run. Two approaches were used in this step: MCO 
individual (MCO Ind) and MCO MA. The combination of MCO 
Ind and MCO MA results for each platform were tallied to compute 
the frequency per gene.

To organize the MAs, an R-driven clustering procedure was 
used in conjunction with the generation of heatmaps. Clustering 
is a technique that requires scaling to analyze multiple studies 
under the same dimension and group a set of objects based on 
similarity between them (40). The data used in this case included 
the results of the preliminary 15 MCOs with a coverage of 2 or 
more in all the GEO datasets. The scale, then, was associated with 
the number of Pareto-efficient frontiers (from 1 to 10) in which 
the gene was identified.

Stage 3: Multiple Criteria Optimization Meta-analysis
In this stage, the heatmap generated previously was used to 

identify all the study cases to be included in the subsequent steps. 
Only studies integrating at least 1 GEO dataset of BC and CRC 
were analyzed. To identify the genes of interest, an MCO MA 
was performed for each study case. Then, a frequency analysis 
and a maximum coverage analysis were performed on the results 
obtained. Due to the aggregated evidence, these genes were 
included as potential genes of interest in this study.

Stage 4: Minimum Spanning Tree Meta-analysis
In stage 3, an overlap check between the previously identified 

potential genes of interest was required to perform the MST 
analysis described in the steps that follow. The resulting genes 
were considered to be of further interest. Then, an MST MA was 
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Figure 1. Material and Methodology

Gray Arrows (  ) Indicate the Flow Process of Methodology

reviewed considering the insight
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performed for each study case. A complete pairwise correlation 
was computed. A correlation analysis of frequency and an analysis 
of maximum coverage were performed to identify the core genes 
of this study.

Furthermore, an overlap check was performed on genes linked to 
signaling pathways associated with BC and CRC (according to the 
Kyoto Encyclopedia of Genes and Genomes) among the 10 GEO 
datasets selected. An MST MA was performed for each study case, 
taking into account the core genes and the genes of the signaling 
pathways selected. Finally, a literature reviewed was performed 
with 2 objectives: to validate the results using GeneMANIA and 
to establish associations between the core genes and gain new 
insights into BC and CRC in female patients.

Results 

The results from each stage of analysis are discussed next.

Stage 1: GEO Dataset Selection & Preprocessing
In this stage, 10 microarray datasets were selected and 

downloaded from the GEO public repository, 5 of BC (28–32) 
and 5 of CRC (32–35). Table 1 summarizes the initial quantity, 
the final number of samples per microarray dataset, and the 
distribution per type of cancer after the preprocessing step.

Each BC microarray dataset had only women’s samples; the 
men’s samples were removed from the CRC microarray datasets. 
Regarding the disease samples, only those samples with cancer, 
carcinoma, and/or adenocarcinoma was accepted; those with 
polyps and adenomas were removed, resulting in a total of 749 
samples. Finally, 432 samples were 
included: 150 control samples and 
282 disease samples, the latter being 
distributed between BC and CRC, 
as seen in Table 1.

Stage 2: Preliminary Multiple 
Criteria Optimization Analysis

A total  of  686 genes were 
identified across 10 Pareto frontiers 
from 15 individual MCO analyses. 
Only 246 of them were used to 
generate the heatmap owing to the 
frequency of their appearances in 
the result. Each gene selected was a 
solution to the MCO problem for 2 
or more of the 15 MCOs analyzed 
following the principles of MA. 
The heatmap that was generated is 
presented in Figure 2.

Six MA cases were identified 
using the heatmap: 4 consisted 
of BC with CRC, 1 was BC, and 
another was CRC. These cases were 
identified through clustering. Four 
of them were finally included in this 
study and are named MCO & MST 
MA #1 through MCO & MST MA 

#4. Figure 2 summarizes the microarray datasets used in the MCO 
and MST MA study cases.

Stage 3: Multiple Criteria Optimization Meta-analysis
A total of 4,729 genes from all the MCO MA study cases were 

analyzed. However, only 1,146 genes following the MA principle 
were included. In other words, the resulting genes were relatively 
differentially expressed in at least 2 MCO MA study cases.

This step required a quality check to move to the next stage. That 
check verified 100% overlap of the 1,146 genes of interest across 
10 selected GEO datasets. As a result, a total of 604 of them had 
100% overlap and were then analyzed using MST in the next stage.

Stage 4: Minimum Spanning Tree Meta-analysis
In this stage, the MST MA analysis was performed using the 

BioOptimatics capabilities of our group’s code. The 4 study 
cases previously mentioned (refer to Figure 2) were included. 
For this analysis, we calculated all pairwise linear correlations 
among 604 genes of interest and identified the most correlated 
structure for each MST MA case. To further streamline the 
results following MA principles, 9 pairs of genes (18 DEGs) were 
considered. These were correlated in at least 2 MST MA cases. 
Refer to Figure 3 for the most correlated path for each MST MA 
case. From the optimal MST solution, 39 correlated paths were 
identified. From them, the CD46-SORD, PIP5K1B, B3GNT3, 
and VCAN-CALU pairs had the highest frequency of appearance 
across 4 MST MA cases.

According to our results, these gene relationships, composed of 
18 DEGs, have important roles in BC and CRC in women.

Table 1. Quantity of Genes and Samples per GEO Dataset

Type of  GPL ID GSE ID Qty Genes Initial Qty Qty Samples Final Qty Qty Samples Qty Samples
Cancer    Samples Removed Samples (Control) (Disease)

BC GPL96 GSE15852 13515 86 0 86 43 43

CRC GPL96 GSE110225 13515 26 12 14 7 7

BC GPL570 GSE17907 13362 55 0 55 4 51

CRC GPL570 GSE110225 23520 34 18 16 8 8

BC GPL4133 GSE70905 4217 137 43 94 47 47

CRC GPL4133 GSE128449 19712 58 36 22 3 19

BC GPL6480 GSE72653 19595 36 0 36 27 9

CRC GPL6480 GSE71187 19595 189 166 23 5 18

BC GPL13158 GSE103512 20741 280 223 57 2 55

CRC GPL13158    251 29 4 25

           Total Samples 1,181 749 432 150 282

Abbreviations: BC, breast cancer; CRC, colorectal cancer; GEO, gene expression omnibus; GPL, GEO platform; GSE, GEO series
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Figure 2. Heat Map – MCO per Dataset & MCO per Platform Distribution: Case-Study Design
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Discussion 

Microarray technology and next-generation sequencing 
have dramatically transformed oncology by enabling the 
simultaneous analysis of thousands of gene expression 
patterns across different cancer types. This advancement has 

facilitated a deeper understanding of cancer biology, allowing 
researchers to explore global gene expression trends and identify 
commonalities across various tumors (9,10). However, the 
analysis of the resulting data typically requires the user to select 
normalization procedures and manipulate parameters that affect 
the results of an MA (10,11).

Table 2. Diseases Related to Core Genes by GeneCards
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Colorectal Cancer                   3
Colon Mucinous Adenocarcinoma                   1
Colonic Benign Neoplasm                   1
Colorectal Adenoma                   1
Familial Colorectal Cancer                   1
Lipoma of the Colon                   1
Breast Cancer                   1
Hereditary Breast Ovarian Cancer 
Syndrome                   1
Ovarian Cancer                   3
Pancreatic Cancer                   3
Prostate Cancer                   2
Gastric Cancer                   2
Lung Cancer                   1
Thymus Cancer                   1
Bladder Cancer                   1
Testicular Cancer                   1
Corneal Cancer                   1
Renal Fibrosis                   2
Muscular Dystrophy                   2
Methylmalonic Aciduria and 
Homocystinuria, Cblc Type                   2
Cataract                   2
Axonal Neuropathy                   2
Charcot–Marie–Tooth Disease                   2
Synostosis                   2
Chromosome 2q35 
Duplication Syndrome                   2
Multiple Sclerosis                   2
Aortic Aneurysm, Familial Thoracic 1                   2
Orofacial Cleft                   2
Asthma                   2
Peripheral Nervous System Disease                   2
Parkinson’s Disease, Late-Onset                   2
Ehlers–Danlos Syndrome                   2
Sclerosteosis                   2
Glomerulonephritis                   2
Systemic Lupus 
Erythematosus                   2
Interstitial Lung Disease 2                   2
Orthostatic Intolerance                   2

Abbreviation: DEGs, differentially expressed genes
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Figure 3. Summary of MST MA study cases: Pathway Structures from Pairwise Correlated Genes
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Our study focused on identifying shared genetic and biological 
pathways between BC and CRC in women. We used GEO datasets 
and employed GeneCards (41), the Kyoto Encyclopedia of Genes 
and Genomes (42), and GeneMANIA (43) to conduct gene 
ontology enrichment analyses, pathway analyses, and network 
constructions. Our analyses revealed that the DEGs were involved 
in various biological processes, including the negative regulation 
of transcription by RNA polymerase II and signal transduction. 
Cellular components primarily consist of the membrane, nucleus, 
and cytosol, while molecular functions involve protein binding 
and metal ion binding.

In comparison, Vogelstein et al. (45) and Poliakov et al. (46) 
provided broader genomic landscapes and metabolic pathways 
in various cancers; their respective focuses were not explicitly on 
sex-specific differences. Vogelstein’s work mapped the genomic 

landscape of common human cancers through comprehensive 
sequencing and identifying driver mutations and classifying them 
into 12 signaling pathways regulating key cellular processes (44). 
Poliakov’s study examined overexpressed genes across various 
cancer types, focusing on metabolic shifts such as glycolysis 
and oxidative phosphorylation (45). Our methodology, which 
employed MCO and MST, led to the identification of 18 DEGs 
associated with BC and CRC in women. These core genes were 
also tied to 37 other diseases, demonstrating potential associations 
between specific gene expression patterns and cancer types.

Another study, this one by Lee et al. (46), conducted an MA 
on BRCA genes and those of related cancers but did not consider 
genes beyond the BRCA spectrum. Vogelstein et al.’s work on 
driver mutations and Poliakov et al.’s research on overexpressed 
genes showed no overlap with our findings. It is important to note 

Figure 4. GeneMANIA Networks

d) Shared Protein Domains, GeneMANIA Network. Of the shared protein 
domains network, 1.29% of 38 genes are linked. Of the 18 DEGs, HSP90AA1, 
SORD, GREM1, RNF38, PDE4B, B3GNT3, CALU, PIP5K1B, OLFM4, PRUNE2, 
SKIL, MOCS1, and SINHCAF were not connected to the rest of the genes.

a) Co-expression, GeneMANIA Network. With respect to the co-expression 
network, 84.88% of 38 genes are linked. Of 18 DEGs, RNF38 and FAM60A 
(SINHCAF) were not connected to the rest of the genes. 

b) Genetic Interactions, GeneMANIA Network. For the genetic interactions 
network, 7.41% of 38 genes are linked. Of the 18 DEGs, CD46 and SORD 
were not connected to the rest of genes.

c) Co-localization, GeneMANIA Network. In the co-localization network, 6.42% 
of 38 genes are linked. Of the 18 DEGs, B3GNT3, SINHCAF, SKIL, PDE4B, 
GREM1, MOCS1, RNF38, CD46, SORD, LRP4, PRUNE2, HSP90AA1, VCAN, 
PIP5K1B, and OLFM4 were not connected to the rest of the genes.

a)

c)

b)

d)
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that the divergence between our results and those from said studies 
is not solely due to our focus on sex-specific differences. The lack 
of overlap may also be attributed to methodological differences, 
dataset variations, or distinct study goals. While our study’s 
unique focus on women allowed for insights into sex-based gene 
expression, other factors such as study design, scope, and analysis 
techniques could also play a role in these differing outcomes.

Of the 18 DEGs shared between BC and CRC in women 
and that were identified in our work, 4—B3GNT3, GREM1, 
OLFM4, and PDE4B—overlapped in breast, sigmoid colon, and 
transverse colon tissues (12). This overlap highlights the potential 
for discovering new biomarkers and signaling pathways that could 
lead to personalized diagnostic tools and targeted therapies for 
female cancer patients.

A multi-cancer biomarker signature developed in a different 
study included 41 genes differentially expressed in multiple cancers, 
although only PDC and RPS6KA1 were specifically tied to BC and 
CRC (13). Chen et al. focused on gene signatures associated with 
immune-suppressive tumor microenvironments, suggesting a link 
between high expression levels of RAB31, IRAK3, and TNPO2 and 
dysfunctional T-cell phenotypes across 6 different cancers (14).

Except for the study by Lopes-Ramos et al., which revealed 
significant regulatory differences between the sexes across multiple 
human tissues, highlighting the fact that sex-biased regulation 
is systemic and not isolated to a few tissues (15), most studies 
overlook sex-specific variations. Recent research has shown that 
signaling pathways can differ between men and women in various 
cancers (15–17). The Wnt/beta-catenin pathway, MAPK/ERK 
pathway, and PI3K/Akt/mTOR pathway are examples in which 
sex-specific variations have been observed, emphasizing the need 
for a more nuanced approach in studying these pathways and their 
therapeutic potential (5,22–26).

Given the emphasis on sex as a critical biological variable, 
our study contributes to cancer research by highlighting the 
sex-specific differences between men and women in the context 
of BC and/or CRC. Future research should continue exploring 
such differences, potentially expanding such studies to include 
male samples for comparative analysis. This approach would help 
validate and refine the current findings and identify additional 
DEGs specific to men. We suggest that BioOptimatics could play a 
pivotal role in exploring these relationships, providing a framework 
for further investigation into cancer-related genetic pathways and 
aiding in the development of targeted therapies.

Resumen 

Objetivo: Este metaanálisis exploró los genes comunes entre el 
cáncer de mama (CM) y el cáncer colorrectal (CCR) en mujeres. 
El cáncer de mama y el cáncer colorrectal son causas significativas 
de morbilidad y mortalidad entre mujeres a nivel mundial. La 
subrepresentación de mujeres en ensayos clínicos, especialmente 
en oncología, y la necesidad de estudiar las diferencias de género 
en el cáncer hacen que esta exploración sea necesaria. Métodos: Se 
utilizaron 10 conjuntos de datos obtenidos del repositorio GEO 
(Gene Expression Omnibus) (5 CM y 5 CCR) para identificar genes 
en común. Se construyeron redes correlacionadas y se analizaron 
con metodologías de BioOptimatics, como la optimización de 

criterios múltiples y el árbol de expansión mínima. Resultados: 
Se identificaron 18 genes diferencialmente expresados, con genes 
principales como B3GNT3, CALU, CD46, DCN, DLX4, entre 
otros, que mostraron una alta frecuencia dentro de los resultados. 
El estudio también identificó 289 enfermedades relacionadas con 
los genes principales, posteriormente reducidas a 37, donde se 
incluyen CM y CCR. Se encontraron asociaciones directas con CM 
y CCR para cinco genes, mientras que siete se relacionaron con 
otros tipos de cáncer. Conclusión: Los resultados de este estudio 
enfatiza la importancia de las diferencias de género en la biología 
del cáncer y sugiere que esta metodología, BioOptimatics, puede 
ayudar a descubrir nuevas vías de señalización y biomarcadores 
para CM y CCR en mujeres.
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