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Leukemia, non-Hodgkin’s lymphoma, and neuroblastoma patients prior to bone 
marrow transplants may be subject to a clinical radiotherapy procedure called total 
body irradiation (TBI). To mimic a TBI procedure, we modified the Jones model of bone 
marrow radiation cell kinetics by adding mutant and cancerous cell compartments. 
The modified Jones model is mathematically described by a set of n + 4 differential 
equations, where n is the number of mutations before a normal cell becomes a 
cancerous cell. Assuming a standard TBI radiotherapy treatment with a total dose 
of 1320 cGy fractionated over four days, two cases were considered. In the first, 
repopulation and sub-lethal repair in the different cell populations were not taken into 
account (model I). In this case, the proposed modified Jones model could be solved 
in a closed form. In the second, repopulation and sub-lethal repair were considered, 
and thus, we found that the modified Jones model could only be solved numerically 
(model II). After a numerical and graphical analysis, we concluded that the expected 
results of TBI treatment can be mimicked using model I. Model II can also be used, 
provided the cancer repopulation factor is less than the normal cell repopulation 
factor. However, model I has fewer free parameters compared to model II. In either 
case, our results are in agreement that the standard dose fractionated over four 
days, with two irradiations each day, provides the needed conditioning treatment 
prior to bone marrow transplant.Partial support for this research was supplied by 
the NIH-RISE program, the LSAMP-Puerto Rico program, and the University of Puerto 
Rico-Humacao. [P R Health Sci J 2010;3:293-298]
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Radiotherapy is the use of X-rays, gamma rays, or electron 
or proton beams to treat cancer. The aim of the treatment 
is to kill the cancer cells, either directly or indirectly (i.e., 

by interfering with cell reproduction). There are two main types 
of radiotherapy treatment: external and internal radiotherapy. 
In external radiotherapy, a linear accelerator is used to deliver 
the radiation dose. Internal radiotherapy is where the source 
of radioactivity is put inside the human body so that it can get 
close to the cancerous tumor. Cancer patients usually undergo 
external radiotherapy in small doses; each dose is called a 
fraction. Dose fractionating reduces toxicity to normal tissues. 
The length of the radiotherapy treatment depends on the type 
of cancer. A procedure called Total Body Irradiation (TBI) is 
considered a special case in radiotherapy. This is because the 
treatment field is the entire body, and thus, the irradiated volume 
is highly irregular in shape. 

TBI is used to treat leukemia, non-Hodgkin’s lymphoma, 
and neuroblastomas and as a preparatory regimen prior bone 

marrow transplant. Patients usually receive a total dose between 
10 to 12 Gy in eight fractions over four days, with at least six 
hours between fractions. As pointed out by an anonymous 
referee, TBI is only part of the conditioning regimen in the bone 
marrow transplant process. The most common pretreatment 
conditioning is a combination of chemotherapy and TBI. Before 
TBI, very high doses of chemotherapy are given to render the 
patient in remission, virtually cancer free. In this case, the main 
purpose of TBI is to help wipe out the host’s marrow as well as 
reduce the probability of rejection. However, in some forms 
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of leukemia, TBI is used to kill the remaining cancerous cells, 
thereby allowing donor marrow to engraft. For this reason, 
the hypothetical clinical case to be considered was a leukemia 
patient in whom the chemotherapy treatment prior to TBI had 
killed 90% of the patient’s cancer cell population. 

At this point, we posed three queries. First, is it possible to 
develop a quantitative model to reproduce the expected results 
of a TBI procedure? Second, are the supralethal doses used in 
TBI strong enough to suppress normal cells’ sub-lethal repair 
and their repopulation among normal, mutated, and cancerous 
cells? Third, we wanted to investigate whether or not the 
standard delivery of the TBI dose over a period of four days, 
with six or eighteen hours between doses, is indeed ideal for the 
elimination of the remaining cancer cell populations. 

To explore possible answers for the proposed queries, we 
modified the Jones et al. model (1-2) of bone marrow radiation 
cell kinetics. Originally, in this study, continuously irradiated 
stem-cell populations were modeled quantitatively by a three-
compartmental formulation. However, Jones et al.’s cell kinetic 
model does not include possible mutations when ionizing 
radiation is acting on a cell population. Since DNA will not 
always be correctly repaired, the appearance of a mutation 
cannot be ignored. In fact, numerous studies have accumulated 
evidence of the cause-effect relationship between damage to 
DNA and the mutagenic effects of ionizing radiation. Therefore, 
in the proposed modified Jones model, it is assumed that n 
mutations will occur before a normal cell becomes a cancer cell. 
As a consequence, the number of compartments and the set of 
differential equations to mathematically describe the evolution 
in time of normal, injured, mutated, killed, and cancer cell 
populations increased from 3 to n + 4. 

When sub-lethal repair and repopulation are not taken into 
consideration, the set of n + 4 differential equations can be solved 
in a closed form. We explicitly found exact solutions for n = 1 
and n = 2. However, when sub-lethal repair and repopulation 
are considered, the corresponding set of differential equations 
can only be solved numerically. 

In this paper, we used the proposed modified Jones model 
to mimic a TBI radiotherapy procedure. Two cases were 
considered. First, we postulated a TBI procedure in which 
repopulation and sub-lethal repair were not considered 
(model I), and thus, could be solved in a closed form. Next, 
this assumption was dropped, and a TBI procedure in which 
repopulation and sub-lethal are considered was numerically 
solved (model II). 

Methods

The behavior of an irradiated stem-cell population can be 
schematized (Figure 1). Namely, at any time t, there is a normal 
cell population, Nn (t); an injured cell population Ni (t); n 
different mutant cell populations Nmj (t), (j = 1, 2,… n); a killed 

cell population Nk (t); and a cancerous cell population Nc (t). 
Each of λ’s parameters connecting compartments is associated 
with a biological process. 

The dotted line in Figure 1 indicates other possible mutations. 
In Table 1, the different biological processes associated with the 
parameters of  λ are explicitly given.

Figure 1. Schematic of the behavior of an irradiated stem-cell 
population.

Table 1. The biological processes associated with the parameters of 
λ as seen in Figure 1.

Parameter	 Cellular Process
 
λni	 Sub-lethal Damage

λin	 Repair of Sub-lethal Damage

λnk	 1 hit killing

λik	 2 hit killing

λnn	 Normal Cell Repopulation

λmj mj 
(j = 1,...,n)	 Mutant Cell Repopulation

λim1
	 No DNA Repair or Incomplete Repair

λmj mj+1 
(j = 1,...,n - 1)	 n Mutation

λmnc	 Mutant Cell → Cancer Cell

λcc	 Cancer Cell Repopulation

The number of mutations required for a normal cell to 
become a cancer cell has been estimated by Renan (3) to be 
between two and ten. However, Little (4) and Wheldon (5) 
argue that most of the essential features of a carcinogesis model 
can be captured with n = 2. 

Therefore, for n = 2 mutations, the dynamics of the 
carcinogenesis mathematical model schematized in Figure 1 
can be described by a set of six differential equations. They are  

12 Esteban.indd   294 7/23/2010   12:01:50 PM



A Mathematical Model for Total Body Irradiation

295PRHSJ Vol. 29 No. 3 • September, 2010

Esteban EP, et al.

where D is the dose and Mn, Mn1, Mn2, Mc are the mitosis 
factors of normal, mutated, and cancerous cells, respectively. 
Further, Fin = 2 – Nn – Ni and Fnn = (1 – Nn – Ni) Fin represents 
dynamic factors that modify the normal cell repair (Fin) 
and proliferation rates (Fnn). In an analogous manner, we 
have defined and Fm1m1, Fm2m2 and Fcc to be the dynamic 
factors associated with the repopulation of both the first 
and second mutations and of cancerous cells, respectively. 

Results

Exact Solutions
Equations 1 – 6 can be solved in an exact closed form when 

neither repopulation nor sub-lethal repair is considered. Thus, 
for n = 1 mutation, we obtain

	
,

dN dD dDn N N F N N M Fnk n ni n in in i nn n n nndt dt dtλ λ λ λ= − − + +
		 (1)

	 1
,

dN dD dD dDi N N N N Fik i ni n im i in i indt dt dt dtλ λ λ λ= − + − −
		 (2)

	
,
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2 2

dN dD dDc N N N M Fck c m c m cc c c ccdt dt dtλ λ λ= − + +
	 	(6)

	 Nn = C1e–Dλ1,	 (7)
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(λ2 – λ1)
+ C2e–Dλ2,Ni =

	 (8)
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	(10)

and in the above, C1, C2, C3, and C4  are constants, and

λ1 = λni + λnk  ,	 (11)
λ2 = λim1 + λik  ,	 (12)
λ3 = λm1c + λm1k  ,	 (13)
λ4 = λck + λ1  ,	 (14)
λ5 = λck + λ2  ,	 (15)
λ6 = λck + λ3  ,	 (16)

where Nk can be obtained from 1 – Nn – Ni – Nm1 – Nm2 – Nc. 
For n = 2 mutations, Nn , Ni , and  Nm1 are the same as those for 
n = 1 mutation. The remaining solutions are
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where, in the above, λ₁ and λ₂ have the same meaning, as in the 
case of n = 1 mutation. The remaining parameters, λ₃, λ₄, λ₅, λ₆, 
λ₇, and λ₈, are defined for n = 2 mutations, as follows

λ3 = λm1m2 + λm1k  ,	 (19)
λ4 = λm2c + λm2k  ,	 (20)
λ5 = λck + λ1  ,	 (21)
λ6 = λck + λ2  ,	 (22)
λ7 = λck + λ3  ,	 (23)
λ8 = λck + λ4  ,	 (24)

notice that parameters λ₃, λ₄, λ₅, and λ₆ illustrated by equations 
19-22 are not the same as those defined for n = 1 mutation. The 
solution for Nk can be obtained in the same way as mentioned 
before. Notice that it is easy to generalize the above results for 
n > 2.

Interestingly, equation 10 suggests that a cancer cell 
population could be initiated with just one mutation. The 
cancer cell population will not depend only on λmnc, but also 
on the product of all the “decaying parameters” (λin λim1 λm1m2λm2 
for two mutations). There are also constraints on the values of 
the parameters of λ. For example, for two mutations, λ₂-λ₁≠0, 
λ₃-λ₁≠0, λ₄-λ₁≠0, etc.

Numerical Solutions
Next, we numerically solved equations 1-6. To do so, we 

needed to assign numerical values to all of the parameters of λ 
and to the repopulation dynamic factors for the normal, mutated, 
and cancerous cells. In Table 2, we listed the chosen numerical 
values for λ´s parameters. The first five parameters in Table 2 
are the resulting values for hematopoietic stem cells receiving 
22 MeV of radiation, extrapolated from animal data to men by 
Morris et al. (6). The remaining values in Table 2 were estimated 
as follows. The λs-rate constants that mediate movement of cells 
between the normal, mutated, and cancerous compartments to 
the killed compartment were set to the same value.

Also, it was assumed that λin = λim1, λm1m2 = λm2c and Fm1m1 = 
αFnn , Fm2m2 = βFnn  Fcc  = γFnn , where α, β, and γ are dimensionless 
numbers. At any time t, we can expect that the mutant 
population is less than the population of the normal cells. Thus, 
for the plotting of Figures 2-7, we chose the following values: 
α = β = 0.5. Usually, since the cancer cell-cycle time of cancer 
cells is shorter than that of normal cells, it is expected that γ > 1. 
However, TBI treatments affect cancer cells to a greater degree 
than they do normal cells; for that reason, we chose the following 
value: γ = 0.5. Note that for more realistic calculations α, β, and γ 
could be time-dependent. The dose rate depends on the cancer 
tumor, exposure time, and radiotherapy procedure. 
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Clinical Case: Total Body Irradiation
To test our proposed model, we considered a patient who had 

received (prior to TBI) a chemotherapy treatment that killed 
90% of the original cancer cell population. As usual for TBI, the 
radiation dose was fractionated over several days. The total dose 
given to the cancer patient was 1320 cGy in 8 fractions over 4 
days. Those fractions were 165 cGy delivered daily at 9:00 am 
and 3:00 pm. The dose rate was 14.2 cGy/min, and the exposure 
time was 11.6 min.

Figures 2-4, show (for model I) the behavior of the survival 
curve (S = Nn + Ni + Nm1 + Nm2) and the killed/cancer cell 
populations, respectively. 

Table 2. λ’s numerical parameter values.

Parameters		  Parameters	
 
λni	 6.4 x 10-3 cGy -1	 λm1m2	 6.42 x 10-3 cGy -1
λin	 6.0 x 10-3 cGy -1	 λm2c	 6.43 x 10-3 cGy -1
λnk	 2.3 x 10-3 cGy -1	 λck	 2.31 x 10-3 cGy -1
λik	 7.0 x 10-2 cGy -1	 λm2k	 2.32 x 10-3 cGy -1
λnn	 2.2 x 10-4 min-1	 λm1m1	 2.2 x 10-4 min-1
λim1	 6.41 x 10-3 cGy -1	 λm2m2	 2.2 x 10-4 min-1
λm1k	 2.31 x 10-3 cGy -1	 λcc	 2.2 x 10-4 min-1
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Figure 2. The survival curve (S = Nn + Ni + Nm1 + Nm2) for model I.

Figure 3. The killed cell population for model I.
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Figure 4. The cancer cell population for model I.

Figure 5. Survival curves for model I (purple and green) and model 
II (blue and red).

Figure 6. Killed cell populations for model I (purple and green) and 
model II (blue and red).

In Figures 5-7, we show a comparison between model I 
(purple and green) and model II (red and blue). As expected, 
Figures 5-7 demonstrate that the survival curve and the killed 
and cancer cell populations are greater when repopulation and 
sub-lethal repair are considered.
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Figure 7. Cancer cell populations for model I (purple and green) and 
model II (blue and red).

Conclusions

In this study, we developed a modified Jones model with n = 2 
mutations in order to ascertain the evolution in time of survival 
curves and cancerous and killed cell populations during a TBI 
clinical procedure. Two cases (model I and model II) were 
considered. First, in model I, we took neither repopulation 
nor sub-lethal repair into consideration and solved, in a closed 
form, the resulting set of differential equations. Second, in 
model II, repopulation and sub-lethal repair were considered, 
and the set of non-linear differential equations was solved by 
implementing a computer code in MATHEMATICA 7.0 (www.
wolframresearch.com). 

At the end of the first irradiation day, the number of killed 
cells in models I and II was about the same. In the following 
irradiation days, the killed cell population was higher in model II 
than in model I. The opposite happened with the survival curves. 
Both models I and II, predicted correctly that at the end of the 
TBI treatment the survival curves would reach zero. 

Regarding the cancer cell population, as expected, it was 
greater in model II than in model I for each of the four days of 
treatment. Notice also, that at the end of the TBI treatment, 
model I and model II both predicted the eradication of most of 
the cancer cell population. However, to reach this result with 
model II, we had to set γ = 0.5, i.e., the cancer cell repopulation 
factor would be less than the normal cell repopulation factor 
during a TBI procedure. In this regard, model I is better than 
model II because it has fewer free parameters. 

Finally, although it is not shown here, we modified the initial 
conditions to those of a TBI treatment and solved the respective 
differential equations that define models I and II. We can 
confirm that, qualitatively for all trials, the same conclusions 
were reached and held true. 

 In summary, the three queries posed at the beginning of this 
paper are now answered. First, a quantitative model to mimic a 
TBI clinical procedure has been developed and hypothetically 
tested. As far as know, the proposed quantitative model is new 

in the literature. It can be easily modified for use in other TBI 
treatments with different protocols, i.e., different doses, days 
fractionated, or number of irradiations per day. Second, it seems 
that during a TBI procedure, the repopulation and sub-lethal 
repair of normal, mutated, and cancerous cell populations is 
nearly suppressed. Third, the simulation of the TBI procedure 
proved that the standard clinical treatment for bone marrow 
transplants is correct in terms of the number of fractionated 
doses, the number of days, and the exposure time. 

Resumen

Previo a un trasplante de medula ósea, pacientes con leucemia, 
linfoma no-Hodgkin, y neuroblastoma podrían ser sometidos 
a un procedimiento en radioterapia llamado Radiación Total 
del Cuerpo (RTC). Para simular RTC hemos modificado el 
modelo de Jones, añadiendo compartimientos virtuales para 
las poblaciones de células mutantes y cancerosas. Este modelo 
de Jones modificado es descrito matemáticamente por un 
conjunto de n+4 ecuaciones diferenciales, donde n es el número 
de mutaciones antes de que la célula normal se transforme en 
una célula cancerosa. Asumiendo un procedimiento común de 
radioterapia RTC, con una dosis total de 1320 cGy fraccionada 
en cuatro días, dos casos son considerados. Primero, el modelo I 
es definido cuando la repoblación y reparación del daño subletal 
no son tomados en cuenta. Se demuestra en este caso, que el 
modelo de Jones modificado puede ser resuelto en forma exacta. 
Segundo, si la repoblación y reparación del daño subletal son 
consideradas, entonces el modelo de Jones modificado puede 
ser sólo resuelto numéricamente (modelo II). Luego de un 
análisis grafico y numérico, podemos concluir que se pueden 
reproducir los resultados esperados para un tratamiento RTC 
usando el modelo I. El modelo II, puede también ser utilizado 
sólo si el factor de repoblación para las células cancerosas es 
menor que el factor de repoblación de las células normales. 
Sin embargo, el modelo I tiene menos parámetros libres que 
el modelo II. En cualquiera de los dos modelos estudiados, 
nuestros resultados sugieren que el tratamiento clínico usual, 
es decir el fraccionamiento de la dosis en cuatro días con dos 
irradiaciones diarias, provee el acondicionamiento adecuado 
para el trasplante de médula ósea. 
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