Abstract
Scaffolds composed of a mixture of poly (L-lactic) acid (PLLA) and polyethylene glycol (PEG) biodegradable polymers were prepared by electrospinning. Three-dimensional scaffolds of highly porous non-woven fibers were produced for biomedical applications and coated with calcium phosphate for bone tissue engineering. A mixture (80/20) of PLLA/PEG was dissolved at 5.7%, 7%, 8% and 9% blend solution concentration. The structure and morphology of the scaffolds were investigated by scanning electron microscopy. Average fiber diameters ranging from 600 nm to 800 nm were obtained as result of the change in viscosity. For low polymer concentration fibers were flat with fused junction between fibers. For high polymer concentrations fibers were cylindrical with fibers overlaying each other. For samples deposited at 9% concentration, individual fibers contained pores on their surface with nanometric dimensions. In addition, thin films of calcium deficient hydroxyapatite were prepared by rf magnetron sputtering on silicon substrates heated to temperatures between 300-600°C. These results suggest that it is feasible to fabricate biopolymer scaffolds by the combination of electrospinning and sputtering techniques.
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).